GOVT. POLYTECHNIC, NAYAGARH LESSON PLAN

6^{th} SEMESTER MECHANICAL ENGINEERING (2022-23) SUBJECT- FLUID MECHANICS

(w.e.f 14/02/2023)

NAME OF FACULTY: DEVASIS SAHOO, Lect. (PTGF)

TOTAL PERIOD-60 THEORY-4P/WEEK

Sl No.	week	Day	Topics to be covered		
	1 st	1 st day	Define fluid		
		2 nd day	Description of fluid properties like Density, Specific weight		
1		3 rd day	Specific gravity, specific volume		
		4 th day	Solve simple problems		
Sl No.	week	Day	Topics to be covered		
	2 nd	1 st day	Definitions and Units of Dynamic viscosity,		
		2 nd day	Definitions and Units of kinematic viscosity		
2		3 rd day	Surface tension Capillary phenomenon		
		4 th day	Solve simple problems		
Sl No.	week	Day	Topics to be covered		
	3 rd	1 st day	Definitions and units of fluid pressure,		
3		2 nd day	What is pressure intensity and pressure head?		
3		3 rd day	Statement of Pascal's Law.		
		4 th day	Concept of atmospheric pressure, gauge pressure, vacuum and absolute		
		70	pressure		
Sl No.	week	Day	Topics to be covered		
	4 th	1 st day	What is Pressure measuring instruments Manometers (Simple)		
		2 nd day	What is Pressure measuring instruments Manometers (Differential)		
4		3 rd day	Bourdon tube pressure gauge(Simple Numerical)		
		4 th day	Solve simple problems on Manometer.		
Sl No.	week	Day	Topics to be covered		
	5 th	1 st day	Definition of hydrostatic pressure		
		2 nd day	Total pressure and centre of pressure on immersed bodies(Horizontal Bodies)		
5		3 rd day	Total pressure and centre of pressure on immersed bodies (Vertical Bodies)		
		4 th day	Solve Simple problems		
Sl No.	week	Day	Topics to be covered		
	6 th	1 st day	What is Archimedes principle?		
6		2 nd day	What is concept of buoyancy? (Definition only)		
		3 rd day	Meta center and meta centric height (Definition only)		
		4 th day	Concept of floatation		
Sl No.	week	Day	Topics to be covered		

7	7 th	1 st day	What is fluid flow? Types of fluid flow				
		2 nd day	What is Continuity equation?				
		3 rd day	Continuity equation (Statement and proof for one dimensional flow)				
		4 th day	What is Bernoulli's theorem (Statement and proof)				
Sl No.	week	Day	Topics to be covered				
	8 th	1 st day	What is Venturimeter, pitot tube				
		2 nd day	Applications and limitations of Bernoulli's theorem				
8		3 rd day	Solve simple problems				
		4 th day	Solve simple problems				
Sl No.	week	Day	Topics to be covered				
	9 th	1 st day	Define orifice				
		2 nd day	Flow through orifice				
9		3 rd day	Orifices coefficient & the relation between the orifice coefficients				
		4 th day	Classifications of notches & weirs				
Sl No.	week	Day	Topics to be covered				
		1 st day	Discharge over a rectangular notch or weir				
1.0	10 th	2 nd day	Discharge over a triangular notch or weir				
10		3 rd day	Simple problems on above				
		4 th day	Simple problems on above				
Sl No.	week	Day	Topics to be covered				
	11 th	1 st day	Definition of pipe.				
		2 nd day	Loss of energy in pipes.				
11		3 rd day	Energy loss through pipe due to friction				
		4 th day	What is Head loss due to friction?				
Sl No.	week	Day	Topics to be covered				
	12 th	1 st day	Head loss due to friction: Darcy's and Chezy's formula (Expression only)				
10		2 nd day	Head loss due to friction: Chezy's formula (Expression only)				
12		3 rd day	Solve Problems using Darcy's and Chezy's formula.				
		4 th day	Solve Problems using Darcy's and Chezy's formula.				
Sl No.	week	Day	Topics to be covered				
	13 th	1 st day	What is Hydraulic gradient?				
13		2 nd day	What is total gradient line?				
		3 rd day	What is jet?				

		4 th day	What is Impact of jet on fixed flat plates?						
Sl	week	Day	Topics to be covered						
No.									
	14 th	1 st day	What is Impact of jet on moving vertical flat plates?						
		2 nd day	Derivation of work done on series of vanes and condition for maximum efficiency.						
14		3 rd day	Derivation of work done on series of vanes and condition for maximum efficiency.						
		4 th day	Numerical Problem solving						
Sl	week	Day	Topics to be covered						
No									
		1 st day	Numerical Problem solving						
	15 th	2 nd day	Impact of jet on moving curved vanes,						
15		3 rd day	Illustration using velocity triangles,						
		4 th day	Derivation of work done, efficiency of jet						