
1

LECTURES NOTES

ON

DIGITAL ELECTRIONICS AND MICROPROCESSOR

BY

Er. Jadunath murmu, Sr. lect E&tc Engg.

GOVT.POLYTECHNIC,NAYAGARH

2

BASICS OF DIGITAL ELECTRONICS

The branch of electronics that deals with digital data in the form of codes. There are
only two codes in digital electronics, and they are 0 and 1. 0 is considered to be low
logic while 1 is considered to be high logic.

Digital Electronics can also be defined as the circuit which deals with Digital Signal is
knows as Digital Electronics

Advantages Of Digital Electronics

a. Digital Electronic circuits are relatively easy to design.
b. It has higher precision rate in terms of accuracy.
c. Transmitted signals are not lost over long distance.
d. Digital Signals can be stored easily.
e. Digital Electronics is more immune to 'error' and 'noise' than analog. But in case

of high-speed designs, a small noise can induce error in the signal.
f. The voltage at any point in a Digital Circuit can be either high or low; hence

there is less chance of confusion.
g. Digital Circuits have the flexibility that can change the functionality of digital

circuits by making changes in software instead of changing actual circuit.

Disadvantages of Digital Electronics

a. The real world is analog in nature, all quantities such as light, temperature,
sound etc. Digital Systems is required to translate a continuous signal to discrete
which leads to small quantization errors. To reduce quantization errors a large
amount of data needs to be stored in Digital Circuit.

b. Digital Circuits operate only with digital signals hence, encoders and decoders
are required for the process. This increases the cost of equipment.

Number System

A digital system can understand positional number system only where there are a few
symbols called digits and these symbols represent different values depending on the
position they occupy in the number.

A value of each digit in a number can be determined using

a. The digit

b. The position of the digit in the number

c. The base of the number system (where base is defined as the total number of
digits available in the number system).

3

Type number System

1. Decimal Number System
2. Binary Number System
3. Octal Number System
4. Hexadecimal Number System

Decimal Number System

The number system that we use in our day-to-day life is the decimal number system
The decimal number system contains ten digits from 0 to 9.(0,1,2,3,4,5,6,7,8,&9)
Base=10
The position in the decimal number system specifies the power of the base (10).
Example

Mathematically, we can write it as

2541 =(2×1000) + (5×100) + (4×10) + (1×1)
 =(2×103) + (5×102) + (4×101) + (1×100)
 = 2541

Binary Number System

Generally, a binary number system is used in the digital computers. In this number
system, it carries only two digits, either 0 or 1
The binary number system contains 2 digits from 0 &1
Base=10
The position in the binary number system specifies the power of the base (2)

Mathematically, we can write it as

1101.011 = (1 × 23) + (1 × 22) + (0 × 21) + (1 × 20) + (0 × 2-1) +(1 × 2-2) + (1 × 2-3)
Octal Number System

The octal number system contains 8 digits from 0 to 7(i.e. 0,1,2,3,4,5,6&7)
Base=8
The position in the octal number system specifies the power of the base (8)

Mathematically, we can write it as

12570= (1 × 84) + (2 × 83) + (5 × 82) + (7 × 81) + (0 × 80)
Hexadecimal Number System

Uses 10 digits and 6 letters, 0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F.
Letters represents numbers starting from 10. A = 10, B = 11, C = 12, D = 13, E = 14, F = 15.
Base =16

4

The position in the Hexadecimal Number System number system specifies the power of
the base (8)
Mathematically, we can write it as
19FDE16= (1 × 164) + (9 × 163) + (F × 162) + (D × 161) + (E × 160)
Number System and Base Conversions

Electronic and Digital systems may use a variety of different number systems, (e.g.
Decimal, Hexadecimal, Octal, Binary).
A number N in base or radix b can be written as:
(N)b = dn-1 dn-2 -- -- -- -- d1 d0 . d-1 d-2 -- -- -- -- d-m
In the above, dn-1 to d0 is the integer part, then follows a radix point,
and then d-1 to d-m is the fractional part.
dn-1 = Most significant bit (MSB)
d-m = Least significant bit (LSB)

1. Decimal to Binary
Convert (34.25) to Binary equivalent
Step 1: Divide the number 34 and its successive quotients with base 2.

Step 2:

Now, perform the multiplication of 0.25 and successive fraction with base 2.

Operation Result carry

0.25×2 0.50 0

0.50×2 0 1

5

(0.25)10=(.01)2

Final Result is

(𝟑𝟒. 𝟐𝟓)𝟏𝟎 =(𝟏𝟎𝟎𝟎𝟏𝟎. 𝟎𝟏)𝟐
2. Binary to Decimal

Convert (1010.01)2 to equivalent Decimal No.
(1010.01)2 =1x23 + 0x22 + 1x21+ 0x20 + 0x2 -1 + 1x2 -2 = 8+0+2+0+0+0.25 = 10.25
 = (10.25)10

3. Decimal to Octal
Convert (86) to Octal equivalent
Step 1: Divide the number 34 and its successive quotients with base 8.

Step 2:

Now perform the multiplication of 0.35 and successive fraction with base 8.

Operation Result carry
0.35X8 2.8 2
0.8X8 6.4 6
0.4X8 3.2 3
0.3X8 2.4 2

(0.35)10=(2632)8

So, the octal number of the decimal number 86.35 is 126.2632

4. Octal to Decimal
(12.2)8
1 x 81 + 2 x 80 +2 x 8-1 = 8+2+0.25 = 10.25
(12.2)8 = (10.25)10

6

5. Hexadecimal to Binary
To convert from Hexadecimal to Binary, write the 4-bit binary equivalent of
hexadecimal.

Example

(3A)16 = (00111010)2

6. Binary to Hexadecimal
To convert from Binary to Hexadecimal, start grouping the bits in groups of 4 from
the right-end and write the equivalent hexadecimal for the 4-bit binary. Add extra 0’s
on the left to adjust the groups.
1111011011
0011 1101 1011
(001111011011)2 = (3DB)16

7. Hexa-decimal to Decimal Conversion
The process of converting hexadecimal to decimal is the same as binary to decimal. The
process starts from multiplying the digits of hexadecimal numbers with its
corresponding positional weights. And lastly, we add all those products.
Example 1: (152A.25)16

(152A.25)16=(1×163)+(5×162)+(2×161)+(A×160)+(2×16-1)+(5×16-2)
 =5418.14453125

7

8. Decimal to Hexadecimal

𝟐𝟖𝟔𝟏𝟏𝟎=𝐁𝟐𝐃𝟏𝟔

Binary addition, subtraction, Multiplication and Division

1.Binary addition

In fourth case, a binary addition is creating a sum of (1 + 1 = 10) i.e. 0 is written in the
given column and a carry of 1 over to the next column.

Example − Addition

2. Binary Subtraction

Subtraction and Borrow, these two words will be used very frequently for the binary
subtraction. There are four rules of binary subtraction.

8

Example − Subtraction

3.Binary Multiplication

Binary multiplication is similar to decimal multiplication. It is simpler than decimal
multiplication because only 0s and 1s are involved. There are four rules of binary
multiplication.

Example − Multiplication

1.3 .1‘s complement and 2‘s complement numbers for a binary number

a.1‘s complement

1’s complement

1’s complement of a binary number is another binary number obtained by toggling all
bits in it, i.e., transforming the 0 bit to 1 and the 1 bit to 0.
Original value 1’s complement

0 1
1 0

Examples:

9

1's complement of 7 (0111) is 8 (1000)

1's complement of 12 (1100) is 3 (0011)

Use of 1's complement

The main use of 1's complement is to represent a signed binary number. Apart from
this, it is also used to perform various arithmetic operations such as addition and
subtraction.

In signed binary number representation, we can represent both positive and negative
numbers

.2’s complement

2’s complement of a binary number is 1 added to the 1’s complement of the binary
number.
i.e. Original value 1’s complement 2’s complement
 1011 0100 0100+1=0101
 1101 0010 0010+1=0011
Use of 2's complement

Negative binary numbers are represented in 2’s complement form so that the same
logic circuit can be used to perform addition as well as subtraction

1.4 Subtraction of binary numbers in 2‘s complement method.

 The operation is carried out by means of the following steps:

(i) Find the 2’s complement of the subtrahend(negative no. only, because 2’s
complement of positive no. is remain same) of given no..
(ii) Then it is added to the minuend.(add 2’s complemented with positive given no.)
(iii)If the final carry over of the sum is 1, it is dropped and the result is positive.
(iv) If there is no carry over, the two’s complement of the sum will be the result and it is
negative.
Examples:

(i) 110110 - 10110

Solution:

Now, 2’s complement of 010110 is (101101 + 1) i.e.101010. Adding this with the
minuend.

 1 1 0 1 1 0 Minuend

10

 1 0 1 0 1 0 2’s complement of subtrahend

 Carry over 1 1 0 0 0 0 0 Result of addition
After dropping the carry over we get the result of subtraction to be 100000.

(ii) 10110 – 11010

Solution:

2’s complement of 11010 is (00101 + 1) i.e. 00110. Hence
 Minued - 1 0 1 1 0

 2’s complement of subtrahend - 0 0 1 1 0

 Result of addition - 1 1 1 0 0

As there is no carry over, the result of subtraction is negative and is obtained by writing
the 2’s complement of 11100 i.e.(00011 + 1) or 00100.
Hence the difference is – 100.

1.5 Use of weighted and Un-weighted codes & write Binary
equivalent number for a number in 8421, Excess-3 and Gray
Code and vice-versa.

Weighted code

Weighted binary codes are those binary codes which obey the positional weight
principle. Each position of the number represents a specific weight. Several systems
of the codes are used to express the decimal digits 0 through 9. In these codes each
decimal digit is represented by a group of four bits.

a. BCD (8421)
b. 6311
c. 2421
d. 642-3
e. 84-2-1

11

Use of Weighted codes

a) Data manipulation during arithmetic operation.
b) Weighted binary code is essential for displaying numeric values in digital

devices such as voltmeters and calculators
.c) To represent the decimal digits in calculators, volt meters etc.
Non-Weighted Codes

In this type of binary codes, the positional weights are not assigned. The examples of
non-weighted codes are Excess-3 code and Gray code.

Non weighted codes are used in:

a) To perform certain arithmetic operations.
b) Shift position encodes.
c) Used for error detecting purpose.

Excess-3 code

The Excess-3 code is also called as XS-3 code. It is non-weighted code used to express
decimal numbers. The Excess-3 code words are derived from the 8421 BCD code words
adding (0011)2 or (3)10 to each code word in 8421. The excess-3 codes are obtained as
follows −

Example

Gray Code

It is the non-weighted code and it is not arithmetic codes. That means there are no
specific weights assigned to the bit position. It has a very special feature that, only one

12

bit will change each time the decimal number is incremented as shown in fig. As only
one bit changes at a time, the gray code is called as a unit distance code. The gray code
is a cyclic code. Gray code cannot be used for arithmetic operation.

Convert a binary number to a Gray number

 Let’s understand the algorithm to go from binary to Gray. See the conversion from ‘11101’
binary to its equivalent in Gray code.

Convert a Gray number to a binary number

Let’s understand the algorithm to go from binary to Gray. See the conversion from
‘11101’ binary to its equivalent in Gray code.

Application of Gray code
 Gray code is popularly used in the shaft position encoders.
 A shaft position encoder produces a code word which represents the angular

position of the shaft.
1.6 Importance of parity Bit.

A parity bit is an extra bit included in binary message to make total number
of 1’s either odd or even. Parity word denotes number of 1’s in a binary
string. There are two parity system-even and odd.

Even parity system
In even parity system 1 is appended to binary string it there is an odd
number of 1’s in string otherwise 0 is appended to make total even number
of 1’s.

Odd parity system
In odd parity system, 1 is appended to binary string if there is even a
number of 1’s to make an odd number of 1’s

Importance of parity Bit.
The purpose of a parity bit is to provide a simple way to check for

Errors

1.7 Logic Gates: AND, OR, NOT, NAND, NOR and
with truth table.

What is Logic Gates?
Logic gates are the basic building blocks of any digital system. It is an
electronic circuit having one or more than one input and only one output.
The relationship between the input and the output is base
logic. Based on this, logic gates are named as AND gate, OR gate, NOT gate
etc.

AND Gate
An AND gate is a logic gate having two or more inputs and a single output.
An AND gate operates on logical multiplication rules

13

Even parity system
In even parity system 1 is appended to binary string it there is an odd
number of 1’s in string otherwise 0 is appended to make total even number

Odd parity system
parity system, 1 is appended to binary string if there is even a

number of 1’s to make an odd number of 1’s

Importance of parity Bit.
The purpose of a parity bit is to provide a simple way to check for

Logic Gates: AND, OR, NOT, NAND, NOR and EX
with truth table.

What is Logic Gates?
Logic gates are the basic building blocks of any digital system. It is an
electronic circuit having one or more than one input and only one output.
The relationship between the input and the output is base
logic. Based on this, logic gates are named as AND gate, OR gate, NOT gate

An AND gate is a logic gate having two or more inputs and a single output.
An AND gate operates on logical multiplication rules

Expression for AND gate Y=A.B

Truth Table of AND gate

In even parity system 1 is appended to binary string it there is an odd
number of 1’s in string otherwise 0 is appended to make total even number

parity system, 1 is appended to binary string if there is even a

The purpose of a parity bit is to provide a simple way to check for

EX-OR gates

Logic gates are the basic building blocks of any digital system. It is an
electronic circuit having one or more than one input and only one output.
The relationship between the input and the output is based on a certain
logic. Based on this, logic gates are named as AND gate, OR gate, NOT gate

An AND gate is a logic gate having two or more inputs and a single output.

14

OR Gate

Expression for OR gate Y=A+B

Truth Table

NOT Gate

The NOT gate is the most basic logic gate of all other logic gates. NOT gate is also
known as an inverter
NOT gate only has one input and one output
it converts 0 into 1 or 1 into 0.

Expression for NOT gate Z=𝑨

15

Truth Table

NAND Gate
The NAND gate is a special type of logic gate in the digital logic circuit.
The NAND gate is the combination of AND -NOT gate
The NAND gate is the universal gate. It means all the basic gates such as AND, OR, and
NOT gate can be constructed using a NAND gate. The output state of the NAND gate
will be low only when all the inputs are high. Simply, this gate returns the complement
result of the AND gate.

=

Expression for NAND gate Z=𝑨. 𝑩

Truth Table

NOR Gate
The NOR gate is also a universal gate
The NOR gate is the combination of the OR -NOT gate
The NOR gate is the universal gate. It means all the basic gates such as AND, OR,
and NOT gate can be constructed using a NOR gate.

Input Out Put
A B Z=𝑨. 𝑩

0 0 0
0 1 1
1 0 1
1 1 0

16

The output state of the NOR gate will be high only when all of the inputs are
low. Simply, this gate returns the complement result of the OR gate

Expression for Nor gate Z=𝑨 + 𝑩

Truth Table

EX-OR

Expression for EX-OR gate Z=(𝑨 B+A𝑩)

Truth Table

1.8 Realize AND, OR, NOT operations using NAND, NOR gates.

Input Out Put
A B Z=𝑨 + 𝑩
0 0 1
0 1 0
1 0 0
1 1 0

Input Out Put
A B Z=A⊕B

0 0 1
0 1 0
1 0 0
1 1 0

NAND and NOR gates provide the following merits in the digital logic
system design

1. Fabrication of NAND and NOR gates are easier than basic gates using in
the integrated digital logic families

2. Number of transistors used to design NAND and NOR gates are also less
than AND and
digital circuits.

3. The conversion of NAND and NOR are more conveniet in digital design.
4. All other logic gates can be realized

gates.
5. Any digital ckt. can be implemented perfectly using either NAND or

NOR gates thus these are called as universal gate

 Implementation of Logic gates using NAND Gate

i) NOT gate

The logic symbol and Boolean expression of NOT

NAND equivalent representation for NOT gate is

The above expression indicates that if the input terminals of NAND gate are
Same shown in fig

ii) AND Gate

 The logic symbol and Boolean expression of AND gate is

17

NAND and NOR gates provide the following merits in the digital logic

Fabrication of NAND and NOR gates are easier than basic gates using in
the integrated digital logic families

f transistors used to design NAND and NOR gates are also less
 OR gates. Since the core area reduces in the integrated

The conversion of NAND and NOR are more conveniet in digital design.
All other logic gates can be realized completely using NAND or NOR

Any digital ckt. can be implemented perfectly using either NAND or
NOR gates thus these are called as universal gate

Implementation of Logic gates using NAND Gate

The logic symbol and Boolean expression of NOT gate is represented by

NAND equivalent representation for NOT gate is

F=𝐴=𝐴. 𝐴
The above expression indicates that if the input terminals of NAND gate are

The logic symbol and Boolean expression of AND gate is represented by

Y=A.B

NAND and NOR gates provide the following merits in the digital logic

Fabrication of NAND and NOR gates are easier than basic gates using in

f transistors used to design NAND and NOR gates are also less
OR gates. Since the core area reduces in the integrated

The conversion of NAND and NOR are more conveniet in digital design.
completely using NAND or NOR

Any digital ckt. can be implemented perfectly using either NAND or

gate is represented by

The above expression indicates that if the input terminals of NAND gate are

represented by

NAND equivalent representation for AND gate is

iii) OR gate:

NAND equivalent representation for OR gate is

iv) NOR gate:

NAND equivalent representation for NOR

18

NAND equivalent representation for AND gate is

Y=A.B=𝐴. 𝐵

Now above expression can drawn as

NAND equivalent representation for OR gate is

Y=A+B=𝐴 + 𝐵=𝐴. 𝐵

Y=𝐴 + 𝐵
NAND equivalent representation for NOR gate is

Y=𝐴 + 𝐵= 𝐴+𝐵

=𝐴. 𝐵
Now above expression can drawn as

v) Ex-OR gate:

NAND equivalent representation for Ex

vi) Ex-NOR gate:

NAND equivalent representation for Ex

19

Y=A𝐵+𝐴𝐵

NAND equivalent representation for Ex-OR gate is

Y=A𝐵+𝐴𝐵=A𝐵 + 𝐴𝐵

=(A𝐵). (𝐴𝐵)

Now above expression can drawn as

gate:

Y=A⊙B=𝑨 𝑩 +AB

equivalent representation for Ex-NOR gate is

Y=𝑨 𝑩 +AB=𝑨 𝑩 + 𝐀𝐁

=(𝑨 𝑩) . (𝐀𝐁)

Now above expression can drawn as

 Implementation of Logic gates using

i) NOT gate

The logic symbol and Boolean expression of NOT gate is represented by

NOR equivalent representation for NOT gate is

ii) AND Gate

 The logic symbol and Boolean expression of AND gate is represented by

NAND equivalent representation for AND gate is

20

Implementation of Logic gates using NOR Gate

The logic symbol and Boolean expression of NOT gate is represented by

equivalent representation for NOT gate is

Z=𝐴
=𝐴 + 𝐴

Now above expression can drawn as

The logic symbol and Boolean expression of AND gate is represented by

Y=A.B

NAND equivalent representation for AND gate is

Y=A.B=𝐴. 𝐵

=𝐴.+ 𝐵
Now above expression can drawn as

The logic symbol and Boolean expression of NOT gate is represented by

The logic symbol and Boolean expression of AND gate is represented by

iii) OR gate:

The logic symbol and Boolean expression of OR gate is represented by

NOR equivalent representation for OR gate is

iv) NAND gate:

The logic symbol and Boolean expression

NOR equivalent representation for

21

The logic symbol and Boolean expression of OR gate is represented by

equivalent representation for OR gate is

Y=A+B=𝐴 + 𝐵

Now above expression can drawn as

The logic symbol and Boolean expression of NAND gate is represented by

Y=𝐴. 𝐵

NOR equivalent representation for NAND gate is

Y=𝐴. 𝐵=𝐴+𝐵=

𝐴.+. 𝐵

Now above expression can drawn as

The logic symbol and Boolean expression of OR gate is represented by

of NAND gate is represented by

v) Ex-OR gate:

The logic symbol and Boolean expression of

NOR equivalent representation for

i) Ex-NOR gate:

The logic symbol and Boolean expression of

NOR equivalent representation for

Y=A⊙B=𝑨 𝑩 +

 =𝑨𝑩 +

 =(𝑨𝑩). (𝑨

22

The logic symbol and Boolean expression of Ex-OR gate is represented by

Y=A𝐵+𝐴𝐵
NOR equivalent representation for Ex-OR gate is

Y= A𝐵 + 𝐴𝐵

=(A𝐵). (𝐴𝐵)

=(𝐴 + 𝐵). (A + 𝐵)

=(𝐴 + 𝐵) + (A + 𝐵)

=(𝐴 + 𝐵) + (A + 𝐵)

Now above expression can drawn as

The logic symbol and Boolean expression of Ex-NOR gate is represented by

Y=A⊙B=𝑨 𝑩 +AB
NOR equivalent representation for Ex-NOR gate is

𝐀𝐁

𝑨𝑩

𝑨 𝑩)

gate is represented by

gate is represented by

23

 = 𝑨 + 𝑩 . (𝑨 + 𝑩)

 = 𝑨 + 𝑩 . (𝑨 + 𝑩)

 =(𝑨 + 𝑩) + (𝑨 + 𝑩)
Now above expression can drawn as

PROCEDURE TO IMPLEMENT THE BOOLEAN FUNCTION USING UNIVERSAL GATE:

1. Draw a logic diagram for the Boolean f unction using basic gates i.e. AND,OR,and
NOT

2. Replace the gate with equivalent NAND or NOR realization.

3. If any path has continuous two inversions, discard those terms to reduce the
number of logic gates employed to implement the Boolean function.

4. Redraw the simplified logic diagram as the Universal gates implementation of
Boolean function.

Example: Implement the following Boolean function using minimum number of (i)NAND
gates, (ii)NOR gates

F=𝐴𝐵 + 𝐶𝐷

Solution:

 Given Boolean function,

F=AB + CD

(i) Using NAND gates:

1. Step:1 Draw a logic diagram for the Boolean f unction using basic gates i.e.
AND,OR,and NOT

2. Step:2 Replace the gate with equivalent NAND realization.

24

3. Step:3 If any path has continuous two inversions, discard those terms to reduce
the number of logic gates employed to implement the Boolean function.

In this case, both path are having two inversions in series so discard those
inverter

4. Step:4Redraw the simplified logic diagram as the Universal gates
implementation of Boolean function

(ii) Using NOR gates:

1. Step:1 Draw a logic diagram for the Boolean f unction using basic gates i.e.
AND,OR,and NOT

2. Step:2 Replace the gate with equivalent NOR realization.

25

3. Step:3 If any path has continuous two inversions, discard those terms to reduce
the number of logic gates employed to implement the Boolean function.

In this case, output section e having two inversions in series so discard those
inverter

4. Step:4Redraw the simplified logic diagram as the Universal gates
implementation of Boolean function

1.9 Different postulates and De-Morgan‘s theorems in Boolean
algebra.

a. 𝑨𝑩=𝑨+𝑩

26

b. (𝑨 + 𝑩)=𝑨.𝑩

 Use Of Boolean Algebra For Simplification Of Logic Expression

What is Boolean Algebra?

Boolean Algebra is used to analyze and simplify the digital (logic) circuits. It uses only
the binary numbers i.e. 0 and 1. It is also called as Binary Algebra or logical Algebra.
Boolean algebra was invented by George Boole in 1854

Rule in Boolean Algebra

Following are the important rules used in Boolean algebra.

I. Variable used can have only two values. Binary 1 for HIGH and Binary 0 for
LOW.

II. Complement of a variable is represented by an overbar (-). Thus, complement of
variable B is represented as . Thus if B = 0 then = 1 and B = 1 then = 0.

III. ORing of the variables is represented by a plus (+) sign between them. For
example ORing of A, B, C is represented as A + B + C.

IV. Logical ANDing of the two or more variable is represented by writing a dot
between them such as A.B.C. Sometime the dot may be omitted like ABC.

BASIC LAWS OF BOOLEAN ALGEBRA:
1. NOT Law:

i. 0=1
ii. 1 = 0

iii. A=𝐴
2. AND Laws

i. A.0=0
ii. A. 1= A

iii. A. A = A
iv. A. 𝐴 = 0

3. OR Laws:

i. A + 0 = A
ii. A + 1 = 1

iii. A + A = A
iv. A + 𝐴 = 1

4. Commutative Laws:

i. A + A = B + A
ii. A . B = B . A

iii. A + B + C = C + B + C

27

iv. A . B . C = B . C. A =C . A . B
5. Associative laws:

i. A +(B + C) = (A + B) + C
ii. A . (B . C) = (A . B) . C

6. Distributive law:

i. A + B C = (A + B) (A + C)
ii. A (B + C)= A B + A C

BOOLEAN THEOREM

1. A + A B = A

Proof: A+AB = A (B + 𝐵) +AB

 =AB +A 𝐵 + AB

 =AB +𝐴𝐵

 =A(B + 𝐵)

 =A .1

 =A

2. A (A + B) = A

Proof: A (A + B) = A.A+A.B

 =A+AB

 =A

3. A + 𝐀 B = A + B

Proof: A +𝑨 B = A + A B + 𝑨 B
 =A + (A + 𝑨) B
 = A + B
4. A. (𝑨 + B) = A

Proof: A. (𝑨 + B) = A. 𝑨 +A B
 =0 + A B
 =A B
5. AB + A. 𝑩 = A

6. (A + B) . (A + 𝑩) = A
7. (A + B) . (A + C) = A + B C

8. A C + 𝑨 B C = A C +B C

28

DEMORGAN’S THEOREM:

I. 𝑨. 𝑩 = 𝑨 + 𝑩

II. 𝑨 + 𝑩 = 𝑨 . 𝑩

DUALITY THEOREM:

 Duality theorem say that in the logic function applying the following changes in
the AND, OR and NOT operation doesn’t affect the output.

1. Swap ‘0’ and ‘1’ present in the expression.
2. Replacing AND operation by OR operation
3. Replacing OR operation by AND operation

Examples:

a. A + 0 = A .1 = A
b. A (B + C) = A B + A C

After applying duality theorem in the above expression, it becomes

 A + (B C) = (A + B) . (A + C)

ABSORPTIVE THEOREM:

a. A . (𝑨 + B) = A . B

b. A + (𝑨 . B) = A + B

TRANSPOSITION THEOREM:

a. A . B + 𝑨 . C = (A + C) (𝑨 + B)

b. (A + B) . (𝑨 + C) = A . C + 𝑨. B

1.10. USING THE THEOREM & LAWS, SIMPLIFY THE FOLLOWING
EXPRESSION

2. (A + B)(A + C)

=A.A+A.C+A.B+B.C - Distributive law

= A + A.C + A.B + B.C - Idempotent AND law (A.A = A)

=A(1+C)+A.B+B.C - Distributive law

=A+AB+BC - Identity OR law (1 + C = 1)

=A(1+B)+BC

=A.1+BC

29

=A+BC

3. 𝐴𝐵𝐶𝐷 + 𝐴𝐵𝐶𝐷 + 𝐴𝐵𝐶𝐷 + 𝐴𝐵𝐶𝐷 + 𝐴𝐷 + 𝐷

=𝐴𝐵𝐶𝐷 + 𝐴𝐵𝐶𝐷 + 𝐴𝐵𝐶𝐷 + 𝐴𝐵𝐶𝐷 + 𝐴𝐷 + 𝐷

=𝐷(𝐴𝐵𝐶 + 𝐴𝐵𝐶 + 𝐴𝐵𝐶 + 𝐴𝐵𝐶 + 1) + 𝐴𝐷

=𝐴 + 𝐴𝐷

=(𝐷 + 𝐴)(𝐷 + 𝐷)

=A+D

4. 𝐴𝐵𝐶 + 𝐴𝐵𝐶 + 𝐴𝐵𝐶 + 𝐴𝐵𝐶

= 𝐴𝐵𝐶 + 𝐴𝐵𝐶 + (𝐴 + 𝐴)𝐵𝐶

= 𝐴𝐵𝐶 + 𝐴𝐵𝐶 + 𝐵𝐶

= 𝐴𝐵𝐶 + 𝐵(𝐴𝐶 + 𝐶)

= 𝐴𝐵𝐶 + 𝐵{(𝐴 + 𝐶) 𝐶 + 𝐶 }

= 𝐴𝐵𝐶 + 𝐵(𝐴 + 𝐶)

= 𝐴𝐵𝐶 + 𝐴𝐵 + 𝐵𝐶

= 𝐴(𝐵𝐶 + 𝐵) + 𝐵𝐶

= 𝐴{ 𝐵 + 𝐶)(𝐵 + 𝐵 } + 𝐵𝐶

= 𝐴(𝐵 + 𝐶) + 𝐵𝐶

= 𝐴𝐵 + 𝐴𝐶 + 𝐵𝐶

1.11. Karnaugh Map For 2,3,4 Variable, Simplification Of SOP
And POS Logic Expression Using K-Map.

A. BOOLEAN FUNCTION:

Boolean function consists of a set of Boolean variables to represent a number using
Boolean connectivity’s logical NOT, logical AND, logical OR operations, parenthesis
and equality sign. It is also known as Boolean expression.

Based on the arrangement of literals and terms Boolean expression is classified in
two types such as,

1. Sum of Product (SOP) form

2. Product of Sum (POS) form

1. Sum of Product (SOP) form:

30

Sum of Product term is consisting of sum (OR operation) of many terms; the
terms may consists of single literal or product of many literals (Variables).The
sum of the terms is called SOP function.

Example:

i. F(A,B,C)=𝐴𝐵𝐶 + 𝐴𝐶 + 𝐴𝐵 + 𝐴𝐵𝐶

ii. F(x,y,z)=𝑥𝑦 + 𝑥𝑧 + 𝑥𝑦𝑧

iii. F(A,B,C,D)=𝐴𝐵𝐶𝐷 + 𝐴𝐵𝐶𝐷 + 𝐴𝐵𝐶𝐷 + 𝐴𝐵𝐶𝐷 + 𝐴𝐵𝐶𝐷

a. Standard Sum of Product (SOP) form:

The SOP form of expression is said to be Standard Sum of Product form
or Canonical form expression if the terms present in the expression contains all
the literals present in the function.

Each individual term present in the expression must have all the literals
of a function.

The steps to convert non canonical SOP to Canonical or standard SOP.

1. Find the missing literal in each product term.
2. Multiply (AND) each product term to the term having missing literal by ORing the

missing literal and its complement.
3. Expand the terms and rearrange the literals in the product terms.
4. Reduce the expression by omitting the repeated terms if any(i.e. A+A=A)

Example:

i) Convert the given expression F(A, B, C) = A + 𝑩C into canonical SOP form.

In the given expression, literal B and C are missing in the 1st product term.
So (B+𝐵) and (C+𝐶) are multiplied (AND) with the term A. Similarly, literal A is
missing in the 2nd product term. So (A+𝐴) is multiplied (AND) with the product
term 𝐵C.

Given;

 F(A,B,C)=𝐴 + 𝐵𝐶

=𝐴 𝐵 + 𝐵 + 𝐵𝐶(𝐴 + 𝐴)

=𝐴𝐵 + 𝐴𝐵 + 𝐴𝐵𝐶 + 𝐴 𝐵𝐶

=𝐴𝐵 𝐶 + 𝐶 + 𝐴𝐵 𝐶 + 𝐶 + 𝐴𝐵𝐶 + 𝐴 𝐵𝐶

= 𝐴𝐵𝐶 + 𝐴𝐵𝐶 + 𝐴𝐵𝐶 + 𝐴 𝐵 𝐶 + 𝐴𝐵𝐶 + 𝐴 𝐵𝐶

31

= 𝐴𝐵𝐶 + 𝐴𝐵𝐶 + 𝐴𝐵𝐶 + 𝐴 𝐵 𝐶 + 𝐴 𝐵𝐶

2. Product of Sum (POS) form:
Product of Sum (POS) term is consisting of sum (AND operation) of many terms;
the terms may consists of single literal or product of many literals (Variables).The
product of the set of sum terms is called POS function.

 Example:

i. F(A,B,C)=(𝐴 + 𝐵 + 𝐶)(𝐴 + 𝐶)(𝐴 + 𝐵)(𝐴 + 𝐵 + 𝐶)

ii. F(x,y,z)=(𝑥 + 𝑦)(𝑥 + 𝑧)(𝑥 + 𝑦 + 𝑧)

iii. F(A,B,C,D)=(𝐴 + 𝐵 + 𝐶 + 𝐷) 𝐴 + 𝐵 + 𝐶 + 𝐷 𝐴 + 𝐵 + 𝐶 + 𝐷 𝐴 + 𝐵 + 𝐶 +

𝐷)(𝐴 + 𝐵 + 𝐶 + 𝐷)

a) Standard Product of sum(POS) form:

The POS form of expression is said to be Product of sum form or Canonical
form expression if the terms present in the expression contains all the literals
present in the function.

Each individual term present in the expression must have all the literals of a
function.

The steps to convert non canonical POS to Canonical or standard POS.

1. Find the missing literal in each sum term.
2. OR each sum term to the term having missing literal by ANDing(product) the

missing literal and its complement.
3. Expand the terms and rearrange the literals in the sum terms.
4. Reduce the expression by omitting the repeated terms if any(i.e. A . A = A)

Let us see an example here.

Convert the given expression F(A, B, C) = (A+B)(B+C) into canonical POS form.

In the given expression, literal C is missing in the 1st sum term. So (C.C) is added with
the term (A+B). Similarly, literal A is missing in the 2nd sum term. So (A.A) is added with
the term (B+C).

Given;

 F(A,B,C)=(𝐴 + 𝐵)(𝐵 + 𝐶)

=(𝐴 + 𝐵) + (𝐶 . 𝐶)(𝐵 + 𝐶) + (𝐴. 𝐴)

=(𝐴 + 𝐵 + 𝐶) 𝐴 + 𝐵 + 𝐶 (𝐴 + 𝐵 + 𝐶)(𝐴 + 𝐵 + 𝐶)

32

=(𝐴 + 𝐵 + 𝐶) 𝐴 + 𝐵 + 𝐶 (𝐴 + 𝐵 + 𝐶)

3. SIMPLIFICATION OF BOOLEAN FUNCTION:

There are 3-different basic simplification methods available for minimizing Boolean
function

1. Boolean algebra
2. Karnaugh map
3. Quine McCluskey method

a. KARNAUGH MAP (K-MAP):

 Simplifying the Boolean functions using Boolean postulates and theorems. It is a
time consuming process and to re-write the simplified expressions after each step.

 To overcome this difficulty, Karnaugh introduced a method for simplification of
Boolean functions in an easy way.

This method is a graphical method for simplification of Boolean function which
consists of 2n cells for ‘n’ variables. Each cell of K-map represents one of the minterm.
The adjacent cells are differed only in single bit position.

Classification of K –Map:

 Depends on the number of variables used in the K-map it is classified as

i. 2-Variable k-map
ii. 3-Variable k-map

iii. 4- Variable k-map
iv. 5- Variable k-map

1. 2- Variable k-map:

The number of variable (n) =2

The number of cells =2n =22=4

33

o The possible combinations of grouping 2 adjacent minterms are {(m0, m1), (m2,
m3), (m0, m2) and (m1, m3)}.

Variable Minterms

A B Representation mi

0 0 𝐴 𝐵 m1

0 1 𝐴 𝐵 m2

1 0 𝐴 𝐵 m3

1 1 𝐴 𝐵 m4

(Minterms of 2-variable expression)

2. 3- Variable k-map:

The number of variable (n) =3

The number of cells =2n =23=8

3. 4- Variable k-map:

The number of variable (n) =4

The number of cells =2n =24=16

34

Don’t care condition:

In some digital systems, nonessential minterms or maxterms may be introduced
in the input sequences. Such nonessential minterms or maxterms are called as don’t care
condition in the Boolean expression.

These nonessential terms never occur in the input sequence of the system.

Normally, in K-Map don’t care conditions are represented by symbol ‘X’. Don’t
care values can be taken as either ‘0’ or ‘1’.

Don’t care conditions occur in the digital systems under the following condition:

i. If certain combinations of input variables are never occur, then the output
functions of such combinations are considered as nonessential or don’t care
condition.

ii. If certain combinations of variables are irrelevant even all the input combination
of variables occurs, then the output functions of such combinations are
considered as nonessential or don’t care condition.

Grouping cell for Minimization:

In K-map, minterms are marked by’1’

maxterm are marked by’0’

don’t care are marked by ‘d’ or ‘x’ i.e X= ‘0’ or ‘1’

In minterm function, don’t care condition is considered as ‘1’ if necessary for
simplification or grouping cell. Else, it is marked by ‘0’

In maxterm function, don’t care condition is considered as ‘0’ if necessary for
simplification or grouping cell. Else, it is marked by ‘1’

Grouping of cell or Loop of cell is process of combining adjacent cells for
simplification.

Grouping is obtained by combining 1’s or 0’s of 2i number cells, where i=0,1,2…,n
(n number of variables used in the Boolean function.)

35

Isolation Cell or Single cell group(i=0):

i. K-map cell is called as Isolation group when no adjacent horizontal or vertical
cell is ‘1’ for minterm and ‘0’ for maxterm.

ii. Isolation cell can’t be used for simplification, it gives the Boolean function remain
as same

2- Cell group(i=1): 2 cell grouping is used to discard any variable from two adjacent
cell in the simplification process

Procedure for Minterm function:

i. Group the cell if a k-map contains horizontally adjacent pair (2 cell) of cells as 1’s
ii. Group the cell if a k-map contains vertically adjacent pair (2 cell) of cells as 1’s

iii. If any cell contain 1 with adjacent vertical or horizontal cell as don’t care
condition ‘X’ then group those two cells by considering X=1

iv. If any cell contain only don’t care condition ‘X’ then don’t group those cells (
Discard by considering as X=0)

Procedure for Maxterm function:

i. Group the cell if a k-map contains horizontally adjacent pair of cells as 0’s
ii. Group the cell if a k-map contains vertically adjacent pair (2 cell) of cells as 0’s

iii. If any cell contain 0 with adjacent vertical or horizontal cell as don’t care
condition ‘X’ then group those two cells by considering X=0

iv. If any cell contain only don’t care condition ‘X’ then don’t group those cells (
Discard by considering as X=1)

36

4- Cell group(i=2): 4 cell grouping is used to discard any two variables from four(4)
adjacent cells in the simplification process

Procedure for Minterm function:

i. Group the cell if a k-map contains horizontally four (4) adjacent of cells as 1’s
ii. Group the cell if a k-map contains vertically four)4) adjacent pail of cells as 1’s

iii. Group the cell If a K-map contain vertically two adjacent cell and horizontal two
adjacent cell which adjacent to each other are 1’s.

iv. If any cell contain 1’s with adjacent vertically or horizontal cell as don’t care
condition ‘X’ then group those four cell by considering X=1.

v. If any adjacent cell contain only don’t care condition ‘X’ then don’t group those
cells (Discard by considering as X=0)

37

38

Procedure for Maxterm function:

i. Group the cell if a k-map contains horizontally four (4) adjacent of cells as 0’s
ii. Group the cell if a k-map contains vertically four)4) adjacent pail of cells as 0’s

iii. Group the cell If a K-map contain vertically two adjacent cell and horizontal two
adjacent cell which adjacent to each other are 0’s.

iv. If any cell contain 1’s with adjacent vertically or horizontal cell as don’t care
condition ‘X’ then group those four cell by considering X=0.

v. If any adjacent cell contain only don’t care condition ‘X’ then don’t group those
cells (Discard by considering as X=1)

39

8- Cell group(i=3): 8 cell grouping is used to discard any three (3) variables from
eight (8) adjacent cells in the simplification process

Procedure for Minterm function:

i. Group the cell if a k-map contains horizontally eight (8) adjacent of cells as 1’s
ii. Group the cell if a k-map contains vertically eight (8)) adjacent pail of cells as 1’s

iii. If any cell contain 1’s with adjacent vertically or horizontal cell as don’t care
condition ‘X’ then group those eight (8) cell by considering X=1.

iv. If any adjacent cell contain only don’t care condition ‘X’ then don’t group those
cells (Discard by considering as X=0)

40

41

Procedure for Maxterm function:

i. Group the cell if a k-map contains horizontally eight (8) adjacent of cells as 0’s
ii. Group the cell if a k-map contains vertically eight (8)) adjacent pail of cells as 0’s

iii. If any cell contain 0’s with adjacent vertically or horizontal cell as don’t care
condition ‘X’ then group those eight (8) cell by considering X=0.

iv. If any adjacent cell contain only don’t care condition ‘X’ then don’t group those
cells (Discard by considering as X=1)

42

SHORT QUESTIONS AND ANSWERS

1. Define digital system?

Ans. A digital system is a system which deals with discrete signal. The input and
output of this system is two binary value which is 0 and 1. Examples of digital systems
are mobile phones, radio, megaphones and many more

2. List the applications of digital system?

Ans. Mobile Phones, Calculators and Digital Computers

Radios and communication Devices.

3. What is meant by bit?

Ans. Single digit that used to represent the number is called bit i.e 1 or 0

4. What is radix number system?

Ans. Radix (base) number system is a general representation of all the number
system. It represent the weight of each digits present in the number system.
Example :

 Base of binary no. system =2
 Base of octal no. system =8
 Base of hexadecimal no. system=16
5. Define binary code?

Ans. A group of binary bit that are used to represent the characters, numbers, letters
or words or symbol is called as binary codes.

The digital data is represented, stored and transmitted as group of binary bits.
This group is also called as binary code. The binary code is represented by the number
as well as alphanumeric letter.

6. What are weighted binary codes?

Ans. A code which consists of bit weight for each digit present in the binary
code is called weighted binary codes

43

 Example:
 BCD codes

7. What are non-weighted binary codes?

Ans. A code which is not having any bit weight for the digit present in the
binary code is called non-weighted binary codes
 Example: Excess-3 code, gray code.

8. What is gray code? Why is it called as reflective code and cyclic code?

Ans. It is the non-weighted binary code, that means there are no specific
weights assigned to the bit position. only one bit position will change each time the
decimal number is incremented so called reflective code. Also the adjacent gray
representation differs in only binary bit hence it is referred as cyclic code.

9. State the associative property of Boolean algebra

Ans. Associative law defines that the grouping of variable in the multivariable
AND and OR operation does not change the output.

i. A +(B + C) = (A + B) + C
ii. A . (B . C) = (A . B) . C

10. State the distributive property of Boolean algebra

Ans. Associative law defines that the distribution of variable with AND
operation over OR operation is equal to distribution of variable with OR operation
over AND operation

i. A + B C = (A + B) (A + C)
ii. A (B + C)= A B + A C

11. State the DeMorgan’s theorem
i. 𝑨. 𝑩 = 𝑨 + 𝑩

ii. 𝑨 + 𝑩 = 𝑨 . 𝑩

44

2.COMBINATIONAL LOGIC CIRCUITS

2.1 Give the concept of combinational logic circuits:

A combinational circuit is the digital logic circuit in which the output depends on
the combination of present inputs applied to the circuit and It does not depend past
input

Combinational circuits are developed using combination of AND, OR, NOT,
NAND, and NOR logic gates.

Combinational Logic Circuits are memory less digital logic circuits whose output
at any instant in time depends only on the combination of its inputs

The combinational logic circuits have no feedback circuit is used.

2.2 Half adder circuit and verify its functionality using truth table:
 Half adder is a combinational circuit which consists of two binary input variables
called augend and addend and two binary output variables called sum and carry. In
the addition result, the lower significant bit is called as sum and the higher significant
bit is called as carry.

Truth table
Input Output

A B Carry Sum
0 0 0 0
0 1 0 1
1 0 0 1
1 1 1 0

K –map for sum

0 1
0 0 1

1 1 0

Sum=𝑨𝑩 + 𝑨𝑩 = 𝑨 ⊕ 𝑩

2.3 Realize a Half-adder using NAND gates only and NOR gates only.

Half

Half

45

K –map for carry

0 1
0 0 0

1 0 1

Carry=AB
Ckt diagram

adder using NAND gates only and NOR gates only.

Half-adder using NAND gates

Half-adder using NAND gates

adder using NAND gates only and NOR gates only.

46

2.4 Full adder circuit and explain its operation with truth table:
 Full adder is a combinational circuit which consists of three binary input
variables called augend and addend and two binary output variables called sum and
carry. In the addition result, the lower significant bit is called as sum and the higher
significant bit is called as carry

Truth table
Inputs Outputs

A B Cin Cout S
0 0 0 0 0
0 0 1 0 1
0 1 0 0 1
0 1 1 1 0
1 0 0 0 1
1 0 1 1 0
1 1 0 1 0
1 1 1 1 1

k-map

K-map can be simplified as

2.5 Realize full-adder using two Half
truth table.

The full adder can be implemented with two half adders by
them. The sum output of first half adder is Ex
full adder is Ex-OR of Cin and output of first half adder.

A
0
0
0
0
1
1
1
1

47

Full adder circuit diagram

adder using two Half-adders and an OR – gate and write

The full adder can be implemented with two half adders by cascading
them. The sum output of first half adder is Ex-OR of A and B. The sum output of

OR of Cin and output of first half adder.
Truth table

Inputs Outputs
B Cin Cout S
0 0 0 0
0 1 0 1
1 0 0 1
1 1 1 0
0 0 0 1
0 1 1 0
1 0 1 0
1 1 1 1

gate and write

cascading
OR of A and B. The sum output of

Cout =𝑩

 =(

 =𝑨𝑩

 = 𝑨

 =𝑪

 =𝑪

 =𝑪

48

k-map

K-map can be simplified as

𝑩𝑪𝒊𝒏 + 𝑨𝑪𝒊𝒏 + 𝑨𝑩
(𝑨 + 𝑨)𝑩𝑪𝒊𝒏 + (𝑩 + 𝑩)𝑨𝑪𝒊𝒏 + 𝑨𝑩
𝑨𝑩𝑪𝒊𝒏 + 𝑨𝑩𝑪𝒊𝒏 + 𝑩𝑨𝑪𝒊𝒏 + 𝑩𝑨𝑪𝒊𝒏 + 𝑨𝑩

𝑨𝑩𝑪𝒊𝒏 + 𝑩𝑨𝑪𝒊𝒏 + 𝑨𝑩𝑪𝒊𝒏 + 𝑨𝑩
𝑪𝒊𝒏(𝑨𝑩 + 𝑩𝑨) + 𝑨𝑩𝑪𝒊𝒏 + 𝑨𝑩
𝑪𝒊𝒏(𝑨 ⊕ 𝑩) + 𝑨𝑩(𝑪𝒊𝒏 + 𝟏)
𝑪𝒊𝒏(𝑨 ⊕ 𝑩) + 𝑨𝑩

Block diagram

𝑨𝑩

2.6 Full subtractor circuit and explain its operation with truth table.:
a. Half adder circuit and verify its functionality using truth table:

Half subtract is a combinational circuit which consists of two
called minuend and subtrahend
borrow. In the two bit result, the lower significant bit is called as
higher significant bit is called as
 Truth table

K- map

Logic diagram

49

Circuit diagram
Full subtractor circuit and explain its operation with truth table.:

a. Half adder circuit and verify its functionality using truth table:
is a combinational circuit which consists of two binary input variables

subtrahend and two binary output variables called difference and
result, the lower significant bit is called as difference

gnificant bit is called as borrow.

Full subtractor circuit and explain its operation with truth table.:
a. Half adder circuit and verify its functionality using truth table:

binary input variables
difference and

difference and the

b.Full subtractor circuit and explain its operation with truth table.:
Full subtraction is a combinational circuit which consists of three binary input

variables called minuends and subtrahends and two binary output variables called
difference and borrow out. In the subraction result, the lower significant bit is called as
difference and the higher significant bit is called as borrow out

Truth table

50

b.Full subtractor circuit and explain its operation with truth table.:
Full subtraction is a combinational circuit which consists of three binary input

and subtrahends and two binary output variables called
difference and borrow out. In the subraction result, the lower significant bit is called as
difference and the higher significant bit is called as borrow out

b.Full subtractor circuit and explain its operation with truth table.:
Full subtraction is a combinational circuit which consists of three binary input

and subtrahends and two binary output variables called
difference and borrow out. In the subraction result, the lower significant bit is called as

2.5 Realize full-subtraction
and write truth table.

The full subtractor can be implemented with two half subtractors by cascading
them. The difference output of first half subtractor is Ex
output of full subtractor is Ex-

Similarly, the borrow output of first half subtractor is ORed with the borrow
output of second half subtractor to get the borrow output of full subtractor

Simplification of Differenc

51

subtraction using two Half-subtractor and an OR

The full subtractor can be implemented with two half subtractors by cascading
them. The difference output of first half subtractor is Ex-OR of A and B. The difference

-OR of Bin and output of first half subtractor.
Similarly, the borrow output of first half subtractor is ORed with the borrow

output of second half subtractor to get the borrow output of full subtractor

Simplification of Difference and Borrow

and an OR – gate

The full subtractor can be implemented with two half subtractors by cascading
OR of A and B. The difference

and output of first half subtractor.
Similarly, the borrow output of first half subtractor is ORed with the borrow

output of second half subtractor to get the borrow output of full subtractor.

Using the simplified boolean expressions for difference and borrow output,
the full subtractor can be realized

2.7 Operation of 4 X 1 Multiplexers and 1 X 4 demultiplexer
Multiplexer is a combinational circuit that has maximum of 2

inputs, ‘n’ number of selection
inputs will be connected to the output based on the values of selection lines.
figure.

52

Using the simplified boolean expressions for difference and borrow output,

the full subtractor can be realized

2.7 Operation of 4 X 1 Multiplexers and 1 X 4 demultiplexer
is a combinational circuit that has maximum of 2n

selection control lines and single output line. One of these data
inputs will be connected to the output based on the values of selection lines.

Using the simplified boolean expressions for difference and borrow output,

n number data
lines and single output line. One of these data

inputs will be connected to the output based on the values of selection lines. Shown in

Where I0, I1, I3, I4…….In

the selection line.

a. 4x1 Multiplexer

4x1 Multiplexer has four data inputs I
output Y. The block diagram

One of these 4 inputs will be connected to the output based on the combination

of inputs present at these two selection lines.
below.

Y=

53

n are the input line, Y is the out put line and S

4x1 Multiplexer has four data inputs I3, I2, I1 & I0, two selection lines s
 of 4x1 Multiplexer is shown in the following figure

One of these 4 inputs will be connected to the output based on the combination
of inputs present at these two selection lines. Truth table of 4x1 Multiplexer is shown

Y=𝑆 𝑆 𝐼 + S S I + S S I + S S I

Logic circuit diagram

are the input line, Y is the out put line and S0, S1,…..Sn are

, two selection lines s1 & s0 and one
following figure.

One of these 4 inputs will be connected to the output based on the combination
of 4x1 Multiplexer is shown

54

De-Multiplexer :

De-Multiplexer is a combinational circuit that performs the reverse operation of
Multiplexer. It has single input, ‘n’ selection lines and maximum of 2n outputs. De-
Multiplexer is also called as De-Mux.

1x4 De-Multiplexer

1x4 De-Multiplexer has one input I, two selection lines, s1 & s0 and four outputs
Y3, Y2, Y1 &Y0. The block diagram of 1x4 De-Multiplexer is shown in the following
figure.

The single input ‘I’ will be connected to one of the four outputs, Y3 to Y0 based
on the values of selection lines s1 & s0. The Truth table of 1x4 De-Multiplexer is shown
below.

Selection
inputs

outputs

S1 S0 Y3 Y2 Y1 Y0

0 0 0 0 0 1

0 1 0 0 1 0

1 0 0 1 0 0

1 1 1 0 0 0

From the above Truth table, we can directly write the Boolean functions for each
output as

Y0=I S S

Y1= I S S

Y2= I S S

Y3= I S S

2.8 Working of Binary-Decimal Encoder & 3 X 8 Decoder.
a. Decoder

Decoder is a combinational circuit that has multiple input multiple output that is
number of input lines and maximum of 2

One of these outputs will be active High based on the combination of inputs
present, when the decoder is enabled. That means decoder detects a particular code.
In the decoder, the combination of input information lines define the logic output of any
one.
output line as logic high at a time and the rest of the output lines are being fixed to logic
0. The outputs of the decoder are nothing but the
when it is enabled.

2 to 4 Decoder
Let 2 to 4 Decoder has two inputs A
diagram of 2 to 4 decoder is shown in the following figure.

i.e input lines ‘n’=2

 output lines=2n=22=4

55

Logic circuit diagram

Decimal Encoder & 3 X 8 Decoder.

is a combinational circuit that has multiple input multiple output that is
number of input lines and maximum of 2n number of output lines.

One of these outputs will be active High based on the combination of inputs
present, when the decoder is enabled. That means decoder detects a particular code.

combination of input information lines define the logic output of any

output line as logic high at a time and the rest of the output lines are being fixed to logic
The outputs of the decoder are nothing but the min terms of ‘n’ input variables

Let 2 to 4 Decoder has two inputs A1 & A0 and four outputs Y3, Y2, Y1 & Y
of 2 to 4 decoder is shown in the following figure.

is a combinational circuit that has multiple input multiple output that is ‘n’

One of these outputs will be active High based on the combination of inputs
present, when the decoder is enabled. That means decoder detects a particular code. i.e

combination of input information lines define the logic output of any

output line as logic high at a time and the rest of the output lines are being fixed to logic
of ‘n’ input variables lines,

& Y0. The block

56

One of these four outputs will be ‘1’ for each combination of inputs when enable, E is
‘1’. The Truth table of 2 to 4 decoder is shown below.

Enable Inputs Outputs

E A1 A0 Y3 Y2 Y1 Y0

0 X X 0 0 0 0

1 0 0 0 0 0 1

1 0 1 0 0 1 0

1 1 0 0 1 0 0

1 1 1 1 0 0 0

From Truth table, we can write the Boolean functions for each output as

Y0=E A A

Y1= E A A

Y2= E A A

Y3= E A A

57

3 to 8 Decoder

Let 3 to 8 Decoder has 3 inputs A2 A1 & A0 and 8 outputs Y7, Y6, Y5, Y4 ,Y3, Y2, Y1 & Y0.
The block diagram of 3 to 8 decoder is shown in the following figure.

i.e input lines ‘n’=3

 output lines=2n=23=8

Enable Inputs Outputs

E A3 A1 A0 Y7 Y6 Y5 Y4 Y3 Y2 Y1 Y0

0 X X X 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0 0 1

1 0 0 1 0 0 0 0 0 0 1 0

1 0 1 0 0 0 0 0 0 1 0 0

1 0 1 1 0 0 0 0 1 0 0 0

1 1 0 0 0 0 0 1 0 0 0 0

1 1 0 1 0 0 1 0 0 0 0 0

1 1 1 0 0 1 0 0 0 0 0 0

1 1 1 1 1 0 0 0 0 0 0 0

From Truth table, we can write the Boolean functions for each output as

Y0=E A A A

Y1=E A A A

Y2=E A A A

Y3=E A A A

Y4=E A A A

Y5=E A A A

Y6=E A A A

Y7=E A A A

Logical circuit of the above expressions is given below:

58

Logic diagram 3 to 8 line decoder

Encoder:
 An encoder is a multiple input multi output combinational digital circuit that
performs the inverse operation of a decoder. It means that an encoder converts the 2n
number of coded inputs into n number of coded outputs.

The output lines of a digital encoder generate the binary equivalent of the input
line whose value is equal to 1 and are available to encode either a decimal or
hexadecimal input pattern to typically a binary or B.C.D (binary coded decimal) output
code

4 to 2 line Encoder:
There are four inputs (Y0, Y1, Y2, and Y3) and two outputs (A0 and A1) in the 4

to 2 line encoder. In addition, To get the respective binary code on the output side, one

59

input line at a time is set to true in a 4-input line. The 4 to 2 line encoder’s block
diagram and truth table are shown below.

Inputs Outputs
Y3 Y2 Y1 Y0 A1 A0

0 0 0 1 0 0
0 0 1 0 0 1
0 1 0 0 1 0
1 0 0 0 1 1

The terms A0 and A1 are logically expressed as follows:

A1=Y3+Y2
A0=Y3+Y1

Circuit Diagram
Two input OR gates can be used to implement the aforementioned two Boolean
functions. Further, The 4 to 2 encoder circuit diagram is given in the graphic below.

Uses of Encoder
In all digital systems, these systems are relatively simple to operate.

To convert a decimal number to a
complete a binary operation like addition, subtraction, multiplication, and so on.

Disadvantages
The disadvantages of a standard encoder are listed below.

 When all of the encoder’s outputs are 0, there
significant input is one or when all inputs are zero, it could be the code matching the
inputs.

 When more than one input is set to high, the encoder generates an output that may or
may not be the proper code. If bo
111. This is neither the comparable code for Y3, when it is ‘1’, nor is it the equivalent
code for Y6, when it is ‘1’.

2.9 Working of Two bit magnitude comparator.
A magnitude digital Comparator is a

digital or binary numbers in order to find out whether one binary number is equal, less
than, or greater than the other binary number. We logically design a circuit for which
we will have two inputs one for A and th
one for A > B condition, one for A = B condition, and one for A < B condition.

Truth table
Input

A
A1 A0

0 0
0 0
0 0
0 0
0 1
0 1
0 1

60

To convert a decimal number to a binary number, encoders are employed. The goal is to
complete a binary operation like addition, subtraction, multiplication, and so on.

The disadvantages of a standard encoder are listed below.

When all of the encoder’s outputs are 0, there is ambiguity. Because when only the least
significant input is one or when all inputs are zero, it could be the code matching the

When more than one input is set to high, the encoder generates an output that may or
may not be the proper code. If both Y3 and Y6 are ‘1’, for example, the encoder outputs
111. This is neither the comparable code for Y3, when it is ‘1’, nor is it the equivalent

2.9 Working of Two bit magnitude comparator.
A magnitude digital Comparator is a combinational circuit that

in order to find out whether one binary number is equal, less
than, or greater than the other binary number. We logically design a circuit for which
we will have two inputs one for A and the other for B and have three output terminals,
one for A > B condition, one for A = B condition, and one for A < B condition.

Out put
B A>B A=B

B1 B0

0 0 0 1
0 1 0 0
1 0 0 0
1 1 0 0
0 0 1 0
0 1 0 1
1 0 0 0

binary number, encoders are employed. The goal is to
complete a binary operation like addition, subtraction, multiplication, and so on.

is ambiguity. Because when only the least
significant input is one or when all inputs are zero, it could be the code matching the

When more than one input is set to high, the encoder generates an output that may or
th Y3 and Y6 are ‘1’, for example, the encoder outputs

111. This is neither the comparable code for Y3, when it is ‘1’, nor is it the equivalent

combinational circuit that compares two
in order to find out whether one binary number is equal, less

than, or greater than the other binary number. We logically design a circuit for which
e other for B and have three output terminals,

one for A > B condition, one for A = B condition, and one for A < B condition.

Out put
 A<B

0
1
1
1
0
0
1

0 1
1 0
1 0
1 0
1 0
1 1
1 1
1 1
1 1

From the above truth table K

A=B =�̅�1�̅�0𝐵1𝐵0+�̅�1A0𝐵

61

1 1 0 0
0 0 1 0
0 1 1 0
1 0 0 1
1 1 0 0
0 0 1 0
0 1 1 0
1 0 1 0
1 1 0 1

From the above truth table K-map for each output can be drawn as follows:

A>B=A1A0𝐵0+𝐵1𝐵0A0+A1𝐵1

𝐵1B0+ A1A0B1B0+ A1�̅�0B1𝐵0

1
0
0
0
1
0
0
0
0

map for each output can be drawn as follows:

 =(�̅� 𝐵 (�̅� 𝐵 + 𝐴

 =(�̅� 𝐵 + 𝐴 𝐵)(

 =(𝐴 ⨀𝐵)(𝐴 ⊙

A<B =�̅� �̅� 𝐵 + 𝐵 𝐵 𝐴

62

𝐴 𝐵) + 𝐴 𝐵 (𝐴 𝐵 + �̅� 𝐵)
(𝐴 𝐵 + �̅� 𝐵)
𝐵)

�̅� + �̅� 𝐵

63

3.SEQUENTIAL

The outputs of the sequential circuits depend on both the combination of present
inputs and previous outputs. The previous output is treated as the present state. So, the
sequential circuit contains the combinational circuit and its memory
sequential circuit doesn't need to always contain a combinational circuit. So, the
sequential circuit can contain only the memory element.

Difference between the combinational circuits and sequential c

below:
Combinational Circuits

1 The outputs of the combinational
circuit depend only on the present
inputs

2 The feedback path is not present in the
combinational circuit.

3 In combinational circuits, memory
elements are not required.

4 The clock signal is not required for
combinational circuits.

5 The combinational circuit is simple to
design.

3.2 State the necessity of c

edge triggering,

1. Clock:

64

SEQUENTIAL LOGIC CIRCUITS

The outputs of the sequential circuits depend on both the combination of present
inputs and previous outputs. The previous output is treated as the present state. So, the
sequential circuit contains the combinational circuit and its memory storage elements. A
sequential circuit doesn't need to always contain a combinational circuit. So, the
sequential circuit can contain only the memory element.

BLOCK DIAGRAM OF SEQUENTIAL CKT

Difference between the combinational circuits and sequential circuits are given

Combinational Circuits Sequential Circuits
The outputs of the combinational
circuit depend only on the present

The outputs of the sequential circuits
depend on both present inputs and
present state(previous output).

The feedback path is not present in the The feedback path is present in the
sequential circuits.

In combinational circuits, memory
elements are not required.

In the sequential circuit, memory
elements play an important role and
require.

The clock signal is not required for The clock signal is required for sequential
circuits.

The combinational circuit is simple to It is not simple to design a sequential
circuit.

3.2 State the necessity of clock and give the concept of level clocking and

LOGIC CIRCUITS

The outputs of the sequential circuits depend on both the combination of present
inputs and previous outputs. The previous output is treated as the present state. So, the

storage elements. A
sequential circuit doesn't need to always contain a combinational circuit. So, the

ircuits are given

The outputs of the sequential circuits
depend on both present inputs and
present state(previous output).
The feedback path is present in the

In the sequential circuit, memory
elements play an important role and

The clock signal is required for sequential

It is not simple to design a sequential

lock and give the concept of level clocking and

A clock signal is a periodic signal in which ON time and OFF time need
not be the same. When ON time and OFF time of the clock signal are the same, a
square wave is used to represent
represents the clock signal:

A clock signal is considered as the square wave. Sometimes, the signal
stays at logic, either high 5V or low 0V, to an equal amount of time. It repeats
with a certain time period,
time'.

 Types of Triggering

These are two types of triggering in sequential circuits:

Level triggering

The logic High and logic Low are the two levels in the clock signal. In level triggering,
when the clock pulse is at a particular level, only then the circuit is activated. There are
the following types of level triggering:

Positive level triggering
In a positive level triggering, the signal with Logic High occurs. So, in this triggering,
the circuit is operated with such type of clock signal. Below is the diagram of positive
level triggering:

65

A clock signal is a periodic signal in which ON time and OFF time need
not be the same. When ON time and OFF time of the clock signal are the same, a
square wave is used to represent the clock signal. Below is a diagram which
represents the clock signal:

A clock signal is considered as the square wave. Sometimes, the signal
stays at logic, either high 5V or low 0V, to an equal amount of time. It repeats
with a certain time period, which will be equal to twice the 'ON time' or 'OFF

These are two types of triggering in sequential circuits:

The logic High and logic Low are the two levels in the clock signal. In level triggering,
clock pulse is at a particular level, only then the circuit is activated. There are

the following types of level triggering:

In a positive level triggering, the signal with Logic High occurs. So, in this triggering,
operated with such type of clock signal. Below is the diagram of positive

A clock signal is a periodic signal in which ON time and OFF time need
not be the same. When ON time and OFF time of the clock signal are the same, a

the clock signal. Below is a diagram which

A clock signal is considered as the square wave. Sometimes, the signal

stays at logic, either high 5V or low 0V, to an equal amount of time. It repeats
which will be equal to twice the 'ON time' or 'OFF

The logic High and logic Low are the two levels in the clock signal. In level triggering,
clock pulse is at a particular level, only then the circuit is activated. There are

In a positive level triggering, the signal with Logic High occurs. So, in this triggering,
operated with such type of clock signal. Below is the diagram of positive

Negative level triggering

In negative level triggering, the signal with Logic Low occurs. So, in this triggering, the
circuit is operated with such type of clock
triggering:

Edge triggering
In clock signal of edge triggering, two types of transitions occur, i.e., transition either
from Logic Low to Logic High or Logic High to Logic Low.

Based on the transitions of
triggering:

Positive edge triggering
The transition from Logic Low to Logic High occurs in the clock signal of positive edge
triggering. So, in positive edge triggering, the circuit is operated with s
signal. The diagram of positive edge triggering is given below.

Negative edge triggering
The transition from Logic High to Logic low occurs in the clock signal of negative edge
triggering. So, in negative edge triggering, the circuit is
signal. The diagram of negative edge triggering is given below.

66

In negative level triggering, the signal with Logic Low occurs. So, in this triggering, the
circuit is operated with such type of clock signal. Below is the diagram of Negative level

In clock signal of edge triggering, two types of transitions occur, i.e., transition either
from Logic Low to Logic High or Logic High to Logic Low.

Based on the transitions of the clock signal, there are the following types of edge

The transition from Logic Low to Logic High occurs in the clock signal of positive edge
triggering. So, in positive edge triggering, the circuit is operated with such type of clock
signal. The diagram of positive edge triggering is given below.

The transition from Logic High to Logic low occurs in the clock signal of negative edge
triggering. So, in negative edge triggering, the circuit is operated with such type of clock
signal. The diagram of negative edge triggering is given below.

In negative level triggering, the signal with Logic Low occurs. So, in this triggering, the
signal. Below is the diagram of Negative level

In clock signal of edge triggering, two types of transitions occur, i.e., transition either

the clock signal, there are the following types of edge

The transition from Logic Low to Logic High occurs in the clock signal of positive edge
uch type of clock

The transition from Logic High to Logic low occurs in the clock signal of negative edge
operated with such type of clock

67

What is flip flop ?

Flip-Flop is popularly known as the basic digital memory circuit. It is an edge
triggered synchronous sequential logic circuit that is capable of storing single bit binary
information. It has two states as logic 1(High) and logic 0(low) states. A flip flop is a
sequential circuit which consists of a single binary state of information or data. The
digital circuit is a flip flop which has two outputs and are of opposite states. It is also
known as a Bistable Multivibrator.

3.3 Clocked SR flip flop

SR (Set-Reset) flip-flop is a clocked sequential circuit which is controlled by edge
triggered CLK control signal.

Logic diagram using NAND gate

Logic diagram using AND and NOR gate

Truth Table

Inputs Outputs States
CLK S R Q 𝑄

0 0 0 NC NC No. change
0 0 1 NC NC No. change
0 1 0 NC NC No. change
0 1 1 NC NC No. change
1 0 0 NC NC No. change
1 0 1 0 1 Reset
1 1 0 1 0 Set
1 1 1 X X No. change

3.3 Clocked SR flip flop with preset and clear inputs.

In SR flip flop, with the help of Preset and Clear, when the power is switched
ON, the state of the circuit keeps on changing, i.e. it is uncertain. It may come to Set (Q =
1) or Reset (Q’ = 0) state. In many applications, it is desired to initially Set or Reset the
flip flop. This thing is accomplished by the Preset (PR) and the Clear

Operations in SR Flip-Flop
 Case-1:

PR = CLR = 1

The asynchronous inputs are inactive and the flip flop responds freely to the S, R
and the CLK inputs in the normal way.

 Case-2:
PR = 0 and CLR = 1

This is used when the Q is

 Case-3:
PR = 1 and CLR = 0

This is used when the Q’ is set to 1.

 Case-4:
PR = CLR = 0

This is an invalid state.

INPUTS

PR CLR CLK

0 1 NA NA

1 0 NA NA

1 1 0 NA

68

Clocked SR flip flop with preset and clear inputs.

In SR flip flop, with the help of Preset and Clear, when the power is switched
the state of the circuit keeps on changing, i.e. it is uncertain. It may come to Set (Q =

1) or Reset (Q’ = 0) state. In many applications, it is desired to initially Set or Reset the
flip flop. This thing is accomplished by the Preset (PR) and the Clear (CLR).

BLOCK DIAGRAM OF F/F

Flop –

The asynchronous inputs are inactive and the flip flop responds freely to the S, R
and the CLK inputs in the normal way.

This is used when the Q is set to 1.

This is used when the Q’ is set to 1.

OUTPUTS Comments

S R Q(n+1) 𝑄(n+1)

NA NA 1 0

NA NA 0 1

NA NA Qn 𝑄n No.

In SR flip flop, with the help of Preset and Clear, when the power is switched
the state of the circuit keeps on changing, i.e. it is uncertain. It may come to Set (Q =

1) or Reset (Q’ = 0) state. In many applications, it is desired to initially Set or Reset the
(CLR).

The asynchronous inputs are inactive and the flip flop responds freely to the S, R

Comments

Set

Re-set

No. change

69

1 1 1 0 0 Qn 𝑄n No. change

1 1 1 1 0 1 0 Set

1 1 1 0 1 0 1 Re-set

1 1 1 1 1 x x Not allowed

Applications of Flip-Flop :
1. Flip flops are used as a bounce elimination switch.
2. They are used as a serial to parallel and parallel to serial conversion.
3. It is used for counters.
4. It is used for frequency divider and also as a latch.

3.5 Construct level clocked JK flip flop using S-R flip-flop and explain
with truth table

The JK flip flop is one of the most used flip flops in digital circuits. The JK flip flop is a
universal flip flop having two inputs 'J' and 'K'. In SR flip flop, the 'S' and 'R' are the
shortened abbreviated letters for Set and Reset, but J and K are not. The J and K are
themselves autonomous letters which are chosen to distinguish the flip flop design
from other types. JK flip-flop can either be triggered upon the leading-edge of the clock
or on its trailing edge and hence can either be positive- or negative- edge-triggered,
respectively.

The JK flip flop work in the same way as the SR flip flop work. The JK flip flop has 'J'
and 'K' flip flop instead of 'S' and 'R'. The only difference between JK flip flop and SR
flip flop is that when both inputs of SR flip flop is set to 1, the circuit produces the
invalid states as outputs, but in case of JK flip flop, there are no invalid states even if
both 'J' and 'K' flip flops are set to 1.

The JK Flip Flop is a gated SR flip-flop having the addition of a clock input circuitry.
The invalid or illegal output condition occurs when both of the inputs are set to 1 and
are prevented by the addition of a clock input circuit. So, the JK flip-flop has four
possible input combinations, i.e., 1, 0, "no change" and "toggle".

70

TRUTH TABLE

INPUTS OUTPUT STATES
J K Q+
0 0 Q Previous state
0 1 0 Re-set
1 0 1 Set
1 1 𝑄 Toggles(Complement of present

state)

71

[Type the document title]
[Type the document subtitle]

leena marndi

72

 Microprocessor
A microprocessor is a multipurpose, programmable, clock driven register

based semiconductor device that read binary instructions from memory, accept
binary data as input and process data according to instruction and provide result
as output
It is a kind of integrated circuit (IC) unit which combines all the basic functions of a
central processing unit (CPU) of the computer.

It is a programmable unit that is fabricated on the silicon chip and it consists of an
ALU unit, clock, and control unit and register array which accepts the input in binary
form (0’s and 1’s) and delivers the output after processing the input data as per the
instructions fetched into the memory unit

Microcomputer
A digital computer in which one microprocessor has been provided to act as a CPU is called
microcomputer

The basic building blocks of this processor are an ALU, register array, and the
main control processing unit. The function of the arithmetic logical unit (ALU) is to
perform the mathematical and logical operations based on the data fetched from the
input units or the memory device.

Some important terms
 Bit: A digit of the binary number of code is called a bit

 Nibble: The 4bit (digit) binary number or code is called a nibble

 Byte: 8 bit binary no. is called Byte

 Word: 16 bit binary no. is called byte

Architecture of Intel 8085A Microprocessor and
description of each block.

o It is a 40 pin I.C. package fabricated on a

o The Intel 8085 uses a single +5Vd.c. supply for its operation.

o Intel 8085 is clock speed is about 3 MHz; the clock cycle is of 320ns.

o 8 bit data bus.

o Address bus is of 16-

o It has 80 basic instructions and

It consists of 3(Three) main section

1. Arithmetic &Logic
2. Timing and Control
3. Sets of Register

73

Architecture of Intel 8085A Microprocessor and
description of each block.

It is a 40 pin I.C. package fabricated on a single LSI chip.

The Intel 8085 uses a single +5Vd.c. supply for its operation.

s clock speed is about 3 MHz; the clock cycle is of 320ns.

-bit, which can address up to 64KB

It has 80 basic instructions and 246 opcodes.

It consists of 3(Three) main section these are as follows

Logic Unit
Control unit

Architecture of Intel 8085A Microprocessor and

s clock speed is about 3 MHz; the clock cycle is of 320ns.

74

1. Arithmetic & Logic Unit

The arithmetic and logic unit performs the following arithmetic and logic
operation

i) Addition

ii) Subtraction

iii) Logical AND

iv) Logical OR

v) Logical Exclusive or

vi) Increment

vii) Decrement

2. Timing and Control unit

The timing and control unit comes under the section of CPU, and it generates the
timing and control signals which are necessary for the execution of Instructions. It
controls flow of data from CPU to other devices. It provides status, control and timing
signals which are required for the operation of memory and I/O device .It is also used to
control the operations performed by the microprocessor and the devices connected to
it. There are certain timing and control signals like: Control signals, DMA Signals, RESET
signals, Status Signal.

3. Sets of Register

Registers are used for temporary storage and manipulation of data and
instructions by the microprocessor. Data remain in the registers till they are sent to the
I/O devices or memory. Intel 8085 microprocessor has the following registers:

a) One 8-bit accumulator (ACC) i.e. register A
b) Six general purpose registers of 8-bit, these are B,C, D, E, H and L
c) One 16-bit stack pointer, SP
d) One 16-bit Program Counter, PC
e) Instruction register
f) Temporary register

75

In addition to the above mentioned registers the 8085 microprocessor contains a
set of five flip-flops which serve as flags (or status flags).

A flag is a flip-flop which indicates some conditions which arises after the
execution of an arithmetic or logical instruction.

a) Accumulator (ACC):

The accumulator is an 8-bit register associated with the ALU. The register 'A'
is an accumulator in the 8085. It is used to hold one of the operands of an
arithmetic and logical operation. The final result of an arithmetic or logical
operation is also placed in the accumulator.

b) General-Purpose Registers:

The 8085 microprocessor contains six 8-bit general purpose registers. They are: B, D,
C, E, H and L register.

To hold data of 16-bit a combination of two 8-bit registers can be employed.

The combination of two 8-bit registers is called register pair.

The valid register pairs in the 8085 are: D-E, B-C and H-L. The H-L pair is used to act
as a memory pointer.

c) Stack Pointer (SP):

It is a 16-bit special function register used as memory pointer. A stack is nothing
but a portion of RAM i.e. it is sequence of memory location set aside by a
programmer to store/ retrieve the content of accumulator, flags, program counter
and general-purpose register during the execution of a program.

Stack work on LIFO(last in first out) Principle

Its operation is faster compared normal store / retrieve of memory location

The stack pointer (SP) controls the addressing of the stack. The Stack Pointer contains the
address of the top element of data stored in the stack.

d) Program Counter (PC):

76

 It is a 16-bit special purpose register. It is used to hold the address of memory of
the next instruction to be executed. It keeps the track of the instruction in a
program while they are being executed. The microprocessor increments the
content of the next program counter during the execution of an instruction so
that at the end of the execution of an instruction it points to the next instructions
address in the program.

e) Instruction register

The instruction register holds the opcode (operation code or instruction code) of the
instruction which is being decoded and executed.

f) Temporary register

It is an 8-bit register associated with the ALU. It holds data during an arithmetic/logical
operation. It is used by the microprocessor. It is not accessible to programmer.

g) Flags:

The Intel 8085 microprocessor contains five flip-flops to serve as a status flags. The flip-
flops are reset or set according to the conditions which arise during an arithmetic or
logical operation.

a. Carry Flag (CS)

b. Parity Flag (P)

c. Auxiliary Carry Flag (AC)

d. Zero Flag(Z)

e. Sign Flag(S)

𝐷 𝐷 𝐷 𝐷 𝐷 𝐷 𝐷 𝐷

S Z X AC X P X CS

a) Carry Flag (CS)

Carry is generated when performing n bit operations and the result is more than n bits,
then this flag becomes set i.e. 1, otherwise it becomes reset i.e. 0.
During subtraction (A-B), if A>B it becomes reset and if (A<B) it becomes set.
Carry flag is also called borrow flag.

77

1-carry out from MSB bit on addition or borrow into MSB bit on subtraction
0-no carry out or borrow into MSB bit

Example:

MVI A 30 (load 30H in register A)
MVI B 40 (load 40H in register B)
SUB B (A = A – B)
These set of instructions will set the carry flag to 1 as 30 – 40 generates a carry/borrow.

MVI A 40 (load 40H in register A)
MVI B 30 (load 30H in register B)
SUB B (A = A – B)
These set of instructions will reset the sign flag to 0 as 40 – 30 does not generate any
carry/borrow.

b) Parity Flag (P)

If after any arithmetic or logical operation the result has even parity, an even number of
1 bits, the parity register becomes set i.e. 1, otherwise it becomes reset i.e. 0.

1-accumulator has even number of 1 bits
0-accumulator has odd parity

Example:

MVI A 05 (load 05H in register A)
This instruction will set the parity flag to 1 as the BCD code of 05H is 00000101, which
contains even number of ones i.e. 2.

c) Auxiliary Carry Flag (AC)

This flag is used in BCD number system(0-9). If after any arithmetic or logical

operation D(3) generates any carry and passes on to B(4) this flag becomes set

i.e. 1, otherwise it becomes reset i.e. 0. This is the only flag register which is

not accessible by the programmer1-carry out from bit 3 on addition or borrow

into bit 3 on subtraction 0-otherwise

Example:

MOV A 2B (load 2BH in register A)
MOV B 39 (load 39H in register B)
ADD B (A = A + B)

78

These set of instructions will set the auxiliary carry flag to 1, as on adding 2B and 39,
addition of lower order nibbles B and 9 will generate a carry.

d) Zero Flag(Z)

After any arithmetical or logical operation if the result is 0 (00)H, the zero flag becomes
set i.e. 1, otherwise it becomes reset i.e. 0.
00H zero flag is 1.
from 01H to FFH zero flag is 0

1- zero result
0- non-zero result

Example:

MVI A 10 (load 10H in register A)
SUB A (A = A – A)
These set of instructions will set the zero flag to 1 as 10H – 10H is 00H

e) Sign Flag(S)

After any operation if the MSB (B(7)) of the result is 1, it indicates the number is negative
and the sign flag becomes set, i.e. 1. If the MSB is 0, it indicates the number is positive
and the sign flag becomes reset i.e. 0.
from 00H to 7F, sign flag is 0
from 80H to FF, sign flag is 1

1- MSB is 1 (negative)
0- MSB is 0 (positive)

Example:

MVI A 30 (load 30H in register A)
MVI B 40 (load 40H in register B)
SUB B (A = A – B)
These set of instructions will set the sign flag to 1 as 30 – 40 is a negative number.

MVI A 40 (load 40H in register A)
MVI B 30 (load 30H in register B)
SUB B (A = A – B)
These set of instructions will reset the sign flag to 0 as 40 – 30 is a positive number.

79

Pin Diagram 8085 microprocessor

A8 - A15 (Output):
These are the Address Bus and used for most significant 8 bits of the memory address
or the 8 bits of the I/0 address,
AD0 - AD7 (Input / Output)
Multiplexed Address/Data Bus it serve dual purpose. They are used for Least significant
8 bits of the memory address (or I/0 address) during the first clock cycle of a machine
cycle. Then it becomes the data bus during the second and third clock cycles.
ALE (Output):

Address Latch Enable signal it goes high during the first clock cycle of a machine cycle
and enables the lower 8 bit address to get latched either into the memory or external
latch So when pulse goes high means ALE=1, it makes address bus enable and when
ALE=0, means low pulse makes data bus enable.

IO/𝑴 (Output):

80

It is a status signal which distinguishes whether I/O or memory operation is being
performed

 When it goes high, the address on the address bus is for an I/O device.

 i.e If IO/M = 1 then I/O operation is being performed.

When it goes low, the address on the address bus is for an memory location

i.e If IO/M = 0 then ◦ Memory operation is being performed.

SO, S1 (Output):

These are the status signals sent by the microprocessor to distinguish the various type
of operation

𝑹𝑫 (Output):

RD stands for Read.

It is an active low signal. i.e RD =0 then read operation is perform

It is a control signal sent by the microprocessor to the memory/input device to control
READ operation. A low signal indicates that data on the data bus must be placed either
from selected memory location or from input device.

RD indicates the selected memory or input device is to be read and that the Data Bus is
available for the data transfer.

 𝑾𝑹(Output):

WR stands for write.

It is an active low signal. i.e WR =0 then write operation is perform

It is a control signal sent by microprocessor to the memory/ output device to control
Write operation A low signal indicates that data on the data bus must be written into
selected memory location or into output device.

 WR indicates the data on the Data Bus is to be written into the selected memory or
output device.

READY (Input):

81

It is a signal sent by an input or output device to the microprocessor.

It indicates that the input or output device is ready to send or receive data.

The microprocessor examines READY signal before it performs data transfer operation

If Ready is high, it indicates that the input or output device is ready to send or receive
data.

 If Ready is low, the microprocessor will wait for Ready to go high before completing the
read or write cycle.

HOLD (Input):

 It indicates that another device is requesting the use of the address and data bus.
Having received HOLD request the microprocessor relinquishes(give up) the use of the
buses as soon as the current machine cycle is completed. Internal processing may
continue. After the removal of the HOLD signal the processor regains the bus.

Explain with Example

The HOLD pin specifies when any device is demanding the employ of address as well
as a data bus. The two devices are LCD as well as A/D converter. Assume that if A/D
converter is employing the address bus as well as a data bus. When LCD desires the
utilize of both the buses by providing HOLD signal, subsequently the microprocessor
transmits the control signal toward the LCD after that the existing cycle will be ended.
When the LCD procedure is over, then the control signal is transmitted reverse to A/D
converter.

 HLDA (Output):

This is the response signal of HOLD, and it specifies whether this signal is obtained or
not obtained. After the implementation of HOLD demand, this signal will go low.

INTR (Input):

It is an Interrupt signal sent by an external device to the microprocessor, when it goes
high the microprocessor suspends the execution of its normal sequence of instructions
i.e If it is active, the Program Counter (PC) will be inhibited from incrementing and an
INTA will be issued.

𝑰𝑵𝑻𝑨 (Output):

It is an interrupt acknowledge signal issued by the microprocessor after receiving an
interrupt request from an external device. it is low active signal.

RST 5.5, 6.5, 7.5:

These pins are the restart maskable interrupts or Vectored Interrupts, used to insert
an inner restart function repeatedly. All these interrupts are maskable, they can be
allowed or not allowed by using programs.

82

TRAP (Input):

Trap interrupt is a non maskable restart interrupt. It is recognized at the same time as
INTR. It is unaffected by any mask or Interrupt Enable. It has the highest priority of
any interrupt.

RESET IN (Input):

Reset sets the Program Counter to zero and resets the Interrupt Enable and HLDA
flipflops. None of the other flags or registers (except the instruction register) are
affected The CPU is held in the reset condition as long as Reset is applied.

RESET OUT (Output):

Indicates CPU is being reset. Can be used as a system RESET.

X1, X2 (Input):

Crystal or R/C network connections to set the internal clock generator X1 can also be
an external clock input instead of a crystal. The input frequency is divided by 2 to give
the internal operating frequency.

CLK (Output):

Clock Output for use as a system clock when a crystal or R/ C network is used as an
input to the CPU. The period of CLK is twice the X1, X2 input period.

SID (Input):

Serial input data line the data on this line is loaded into accumulator bit 7 whenever a
RIM instruction is executed.

SOD (output):

Serial output data line. The output SOD is set or reset as specified by the SIM
instruction.

Vcc:

+5 volt supply.

Vss:

Ground Reference.

4.4. Stack, Stack pointer & stack top
 Stack is a portion of RAM memory defined by the user for temporary storage

and retrieve of data while executing a program.
 The microprocessor will have dedicated internal register called a stack pointer

to hold the address of the stack
 Also the processor will have facility to automatically decrement/ increment the

content of SP after every Write/read into stack

83

 For every write operation into the stack the SP automatically decremented by
two

 For every read operation into the stack the SP automatically incremented by
two

 The contents register are moved to certain memory location by PUSH
operation, then the register are used for other operations

 After push operation those contents which were saved in the memory are
transferred back to the register by POP operation

 The set of memory location kept for this operation is called Stack
 The last memory location of the occupied portion of the Stack is called Stack

top
 A special 16 bit register is known as stack pointer hold the address of stack top
 The stack pointer is initialized in beginning of the program by LXI SP or SPHL

instruction
 Data are stored in the stack on Last-in-first-out(LIFO) principle
 SP register hold the address of stack top location

PUSH OPERATION

POP OPERATION

POP operation is used to transfer the contents from the stack to the register

84

Interrupts in 8085 microprocessor:

When microprocessor receives any interrupt signal from peripheral(s) which are

requesting its services, it stops its current execution and program control is transferred
to a sub-routine by generating CALL signal and after executing sub-routine by
generating RET signal again program control is transferred to main program from
where it had stopped.

When microprocessor receives interrupt signals, it sends an acknowledgement
(INTA) to the peripheral which is requesting for its service.

Interrupts can be classified into various categories based on different
parameters:

1. Hardware and Software Interrupts –

When microprocessors receive interrupt signals through pins (hardware) of
microprocessor, they are known as Hardware Interrupts. There are 5 Hardware
Interrupts in 8085 microprocessor.

They are – INTR, RST 7.5, RST 6.5, RST 5.5, TRAP

Software Interrupts are program instruction those which are inserted in between the
program which means these are mnemonics of microprocessor. There are 8 software
interrupts in 8085 microprocessor.

They are – RST 0, RST 1, RST 2, RST 3, RST 4, RST 5, RST 6, RST 7.
2. Vectored and Non-Vectored Interrupts –

Vectored Interrupts are those which have fixed vector address (starting address of
sub-routine) and after executing these, program control is transferred to that address.

Vector Addresses are calculated by the formula
Vector Addresses=Interrupt No.*8

85

INTERRUPT VECTOR ADDRESS

TRAP (RST 4.5) 24 H

RST 5.5 2C H

RST 6.5 34 H

RST 7.5 3C H

For Software interrupts vector addresses are given by:

INTERRUPT VECTOR ADDRESS

RST 0 00 H

RST 1 08 H

RST 2 10 H

RST 3 18 H

RST 4 20 H

RST 5 28 H

RST 6 30 H

RST 7 38 H

Non-Vectored Interrupts are those in which vector address is not
predefined. The interrupting device gives the address of sub-routine for these
interrupts. INTR is the only non-vectored interrupt in 8085 microprocessor.

3. Maskable and Non-Maskable Interrupts –

Maskable Interrupts are those which can be disabled or ignored by the
microprocessor. These interrupts are either edge-triggered or level-triggered, so
they can be disabled.
INTR, RST 7.5, RST 6.5, RST 5.5 are maskable interrupts in 8085
microprocessor

Non-Maskable Interrupts are those which cann
ignored by microprocessor.
TRAP is a non-maskable interrupt. It consists of both level as
well as edge triggering and is used in critical power failure
conditions.

Priority of Interrupts –

When microprocessor receives multiple interrupt
execute the interrupt service request (ISR) according to the priority of the
interrupts.

Instruction for Interrupts –

5. Enable Interrupt
6. Disable Interrupt
7. Set Interrupt Mask

(RST 7.5, RST 6.5, RST 5.5) by setting various bits to form masks or
generate output data via the Serial Output Data (SOD) line

8. Read Interrupt Mask
the hardware interrupts (RST 7.5
register a byte which defines the condition of the mask bits for the
interrupts. It also reads the condition of SID (Serial Input Data) bit on the
microprocessor.

4.6 Opcode & Operand,

86

Maskable Interrupts are those which cannot be disabled or
ignored by microprocessor.

maskable interrupt. It consists of both level as
well as edge triggering and is used in critical power failure

When microprocessor receives multiple interrupt requests simultaneously, it will
execute the interrupt service request (ISR) according to the priority of the

 (EI)
Interrupt (DI)

Mask (SIM) – It is used to implement the hardware interrupts
(RST 7.5, RST 6.5, RST 5.5) by setting various bits to form masks or
generate output data via the Serial Output Data (SOD) line

Mask (RIM) – This instruction is used to read the status of
the hardware interrupts (RST 7.5, RST 6.5, RST 5.5) by loading into the A
register a byte which defines the condition of the mask bits for the
interrupts. It also reads the condition of SID (Serial Input Data) bit on the

4.6 Opcode & Operand,

ot be disabled or

maskable interrupt. It consists of both level as
well as edge triggering and is used in critical power failure

requests simultaneously, it will
execute the interrupt service request (ISR) according to the priority of the

hardware interrupts
(RST 7.5, RST 6.5, RST 5.5) by setting various bits to form masks or

This instruction is used to read the status of
, RST 6.5, RST 5.5) by loading into the A

register a byte which defines the condition of the mask bits for the
interrupts. It also reads the condition of SID (Serial Input Data) bit on the

87

What is Opcode?

 Opcodes mean “operation codes”. An opcode is the first part of an instruction
which specifies the task to be performed by the computer is called opcode.

 It is an instruction that tells the processor what to do with the variable or data written
beside it.

What is Operand?

An operand is the second part of the instruction, is the data to be operated on and it is
called operand .

Instruction Word Size

The 8085 instruction set is classified into the following three groups according to
word size:

1. One-word or 1-byte instructions

2. Two-word or 2-byte instructions

3. Three-word or 3-byte instructions

One-Byte Instructions

In 1-byte instruction, the opcode and the operand of an instruction are
represented in one byte.
Operand(s) are internal registers and are in the instruction in form of codes. If
there is no numeral present in the instruction then that instruction will be of
one-byte.
Instruction are required one Memory location to store one byte in the memory
Example, MOV C, A, RAL, and ADD B, etc.

Two-word or 2-byte instructions
Two-byte instruction is the type of instruction in which the first 8 bits indicates the
opcode and the next 8 bits indicates the operand.

In a two-byte instruction, the first byte specifies the operation code and second
byte specifies the operand.

Source operand is a data byte and immediately following the opcode. If an 8-bit
numeral is present in the instruction then that instruction will be of two-byte. Here,
the numeral may be a data or an address.

Instruction are required two Memory location to store in the memory

88

For example, MVI A, 35H and IN 29H, etc.

 In a two-byte instruction, the first byte will be the opcode and the second byte will
be for the numeral present in the instruction.

Three-word or 3-byte instructions
Three-byte instruction is the type of instruction in which the first 8 bits indicates
the opcode and the next two bytes specify the 16-bit address. The low-order
address is represented in second byte and the high-order address is represented in
the third byte.

In a three-byte instruction, the first byte specifies the opcode, and the following
two bytes specify the 16-bit operand.

Instruction are required three Memory location to store in the memory

Example, LXI H,3500H and STA 2500H, etc

Instruction set of 8085

An instruction is a binary pattern designed inside a microprocessor to perform a
specific function.

In microprocessor, the instruction set is the collection of the instructions that the
microprocessor is designed to execute.

Classification of Instruction Set of 8085

The instruction set of 8085 microprocessor is classified into five types which
include the following.

89

Data Transfer Instruction

An instruction that is used to transfer the data from one register to another is
known as data transfer instruction. So, the data transfer can be done from source to
destination without changing the source contents.

Data transfer mainly occurs from one register to another register, from memory
location to register, register to memory, and between an I/O device & accumulator.

MOV M, Data
This type of instruction specifies the data transfer immediately to a location of
memory. This memory location address can be specified at the H-L registers.

Example: MOV M, 28H

MVI r, Data (Move Immediate)
In this type of instruction, the transmission of data can be done immediately
toward the particular register.

Example: MVI r, 32H

LDA address (Load Accumulator)
LDA is a load accumulator instruction that is mainly used for copying the data
available in the address of memory indicated as the instruction’s operand to the
accumulator. Particularly, in this case, the available data in the 16-bit address
memory is transferred toward the accumulator.

Example: LDA 500H

LDAX (Load Accumulator by extended Register Pair)

90

It is a load accumulator from an address in the register pair. In this type of data
transfer instruction, the register holds the address of the data that needs to be
loaded to the accumulator.

Example: LDAX C/D

LHLD (Load H & L Registers Direct)
LHLD instruction is a direct load instruction, where it loads the H-L register with
the data from the memory. In this type of instruction, the data which is available in
the address specified is copied to the L register first and then the available data
within the next memory location will be loaded in the H register.

Example: LHLD 2500H

STA Address (Store Accumulator Contents in Memory)
STA stands for stored accumulator direct instruction. Once this instruction is
accepted, then the available data within the accumulator can be transferred to the
address of memory indicated within the operand.

Example: STA 2030H

In the above example data stored in the accumulator will be stored to memory
location 2030. LSB followed by MSB will be stored in the memory location.

STAX Register (Store Accumulator by Extended Register)
It is a stored accumulator indirect instruction. In this instruction, the register is
available as the operand that holds a memory address. Thus, the accumulator data
can be copied to that specific memory location.

Example: STAX D

XCHG (Exchange)
This type of data transfer instruction can be used to exchange the data available
within two registers.

Example: XCHG H-L & D-E. In this, the contents of H & D and L & E are exchanged.

SPHL (Stack Pointer HL Register)
In this data transfer instruction, the data of H &L can be moved to the stack
pointer.

PCHL (Program Counter with HL Data)

91

Similar to SPHL instruction, this PCHL instruction simply copies the H-L
register’s data into the SP by loading the high order bytes at H & low order bytes at
L.

PUSH
In this type of instruction, the stack can be loaded with the available data within
the register provided in the operand. Initially, the stack pointer gets decreased &
high order bytes are copied to the stack. Further stack pointer gets decreased to
load the low order register bytes.

Example: PUSH D

POP
This instruction indicates the data transfer from the top of the stack to the register
provided as the operand.

Example: POP C

OUT
In this type of data transfer instruction, the data available at the accumulator can be
copied toward the I/O port. An 8-bit port address at the operand is present.

Example: OUT 36 H

IN
This type of instruction is used to load the data available at the I/O port to the
accumulator. The operand simply holds the port address from where the data can
be copied.

Example: IN, 6B H

Arithmetic Instruction of 8085

The arithmetic instructions perform different operations like addition, subtraction,
increment & decrement on the data within memory & register in the 8085
microprocessor.

ADD r
This arithmetic instruction adds the data which is available in the register to the
data available within the accumulator & the final result will be stored in the
accumulator.

Example: ADD C

92

ADD M

This type of instruction is mainly used to add the date in the memory address data
denoted at the operand to the data available at the accumulator. So the addition
result will be stored within the accumulator.

Example: ADD 28H

ADI Data (Add Immediate)
In this instruction, the 8-bit data is specified as an operand is added immediately to
the data available at the accumulator & the result is stored at the accumulator.

Example: ADI 24 H

ACI Data (Add with Carry Immediate)
This type of instruction simply adds the 8-bit data available at the operand &
carries the flag by the data available at the accumulator. After every addition, the
flag reproduces the output of the addition.

Example: ACI 35H

ADC r (Add with Carry)
In this type of instruction, the data present at the register can be added to the data
available at the accumulator with the carry bit & output is simply reflected at the
accumulator.

Example: ADC D

AMC M
This type of instruction is mainly used to add the available data at the location of
memory whose address is denoted within the operand specified & the carry bit
with the data available within the accumulator. So the output of addition can be
stored within the accumulator.

Example: AMC 25H

SUB r
This type of instruction is used to subtract the available data at the register given at
the operand from the data present in the accumulator. The final result will be stored
at the accumulator.

Example: SUB C
SUB M

93

This instruction is used to subtract the available data at the location of memory
whose address is provided by the H-L register from the data present at the
accumulator.

Example: SUB 128H

SUI Data (Subtract Immediate from Accumulator)
This type of instruction is mainly used to instantly subtract the data available as
operand within the instruction from the available data at the accumulator. After
every subtraction, the flag can be changed to show the result of subtraction.

Example: SUI 35H

SBI Data (Subtract with Borrow Immediate from Accumulator)
This type of instruction helps subtract the 8-bit data provided as the operand & the
borrow bit from the available data at the accumulator, and the result will be stored
within the accumulator.

Example: SBI 24H

SBB r
This instruction is used to subtract the data present at the register & the borrow bit
from the data present at the accumulator.

Example: SBB C

SBB M (Subtraction with Borrow)
This instruction is used to specify the subtraction of data available at the memory
location, whose address is available at the H-L register & the borrow bit from the
data present at the accumulator.

Example: SBB 1000H

INX r (Increment Extended Register)
This type of instruction is used to increase the data by 1 which is available at the
register provided at the operand. The result will be stored at the same register.

Example: INX C

DCX r (Decrement Extended Register)
This type of instruction decreases the data available at the register by 1 & the result
will be stored in the same register.

94

Example: DCX C

DCR M (Decrement Register)
In an instruction, sometimes the operand holds a location of memory. The memory
location address is available at the H-L pair. Thus the data available at that specific
location will be decreased by 1.

Example: DCR 28H

DAA (Decimal Adjust Accumulator)
DAA is a decimal adjust accumulator, used to break the binary number from 8-bit
to two 4-bit binary-coded decimal numbers.

Logical Instruction

Logical instructions are mainly used to perform different operations like logical or
Boolean over the data available in either memory or register. These instructions
will modify the flag bits based on the operation executed.

CMP R/M (Compare the Register/Memory with the Accumulator)
This instruction is used to compare the data at the accumulator with the data
present at the register or memory which is given as operand. According to the
result obtained by the comparison, the flags are set. While the data that is
compared remains unchanged.

Example: CMP B

CPI Data (Compare immediate through the Accumulator)
This type of instruction compares the 8-bit data provided as operand within the
instruction by the data available within the accumulator. This result is shown
through the flags.

Example: CPI 50

ANA R/M (Logical AND register or memory with the accumulator)
This instruction executes the AND operation of the data available within the
accumulator to the data available in the memory or register. After the operation of
AND, S, P, Z will be changed to show the outcome of the comparison.

Example: ANA C

ANI data (And Immediate with Accumulator)

95

This instruction executes AND operation for the immediate 8-bit data provided as
operand by the data available in the accumulator.

Example: ANI 35H

ORA R/M (OR Accumulator Register or Memory)
This instruction is used to perform OR operation of the data available within the
accumulator by the data available in the memory location or register.

Example: ORA C

ORI data (OR Immediate Data)
The 8-bit data provided as an operand is ORed logically with the data within the
accumulator. So, the output of this instruction can be saved within the accumulator.

Example: ORI 36H

XRA R/M (Exclusive OR Immediate with Accumulator)
This instruction is used to execute XOR operation through data available at the
accumulator & the data present at the memory or register.

Example: XRA 2030

XRI data (Exclusive OR Accumulator)
This type of instruction is used to execute the XOR operation of the 8-bit data
specified as operand & the data present at the accumulator. The output will be
stored at the accumulator.

Example: XRI 30

RLC (Rotate Left Accumulator)
This instruction holds significance when there exists a need to rotate the bits
present in the accumulator. Basically, for an 8-bit value, each bit is rotated or
shifted left by one position. Also, the rotation of the last bit of the sequence i.e.,
D7, sets the CY flag.

RRC (Right Rotate Accumulator)
This instruction is used to rotate the bit toward the right with one position. So, in
this case, D0 sets the CY flag.

96

Example: RRC

RAL (Rotate Accumulator Left)
This type of instruction is used to rotate the bits toward the left with one of the data
available within the accumulator through the carry flag. Here, D7 can be shifted to
hold the flag & the bit within the carry flag can be shifted to D0.

Example: RAL

RAR (Rotate Accumulator Right)
This type of instruction is mainly used to rotate the data bits to the right which are
available within the accumulator by the carry flag. Here, D0 can be shifted to hold
the flag & the carry bit can be moved to the D7 position.

Example: RAR

STC (Set the Carry Flag)
This type of instruction is used to set the carry flag (CF) to 1 by not affecting any
other flags.

Example: STC

CMA (Complement the Accumulator)
This type of instruction generates the complement of data at the accumulator. So,
this function does not change any of the flags.

Example: CMA

CMC (Complement the Carry Flag)
This type of instruction is used to complement the data available at the carry flag
(CF). So this instruction does not affect any other flag.

Example: CMC

97

Branching Instruction

These types of instructions are mainly used to transfer or switch the
microprocessor from one location to another. So, it simply changes the general
sequential flow.

JMP address (Jump unconditionally)
This type of instruction is mainly used to transfer the series of the current program
to that location of memory whose 16-bit address can be simply specified within the
operand of the instruction.

Example: JMP 2014H

Jx Address
This is a conditional branching type instruction, where the series of current
programs can be transferred to that specific location whose address can be
provided at the operand. However this transferring mainly depends on the specified
PSX flag.

Example: JZ 1200H

CALL address
This instruction shifts the control of a series of current programs toward the
memory address available at the operand. However the PC gets decreased before
transferring,

Example: CALL 2400H

RET (Return from the Subroutine)
This type of instruction can cause the unconditional return of the sub-routine to the
actual program.

RST(Restart Instruction)
This type of instruction is mainly used to transfer the series from the main program
to the interrupt service routine. Mostly, the transfer can be performed above one of
the 8-bits which are indicated within the operand.

Control Instruction

These instructions are mainly used to control the microprocessor operations. These
instructions are discussed below.

98

NOP (No operation)
NOP stands for no operation. Once the 8085 microprocessor gets this instruction,
then it does not perform any operation based on execution.

DI (Disable Interrupts)
DI is the disabling of the interrupt that is generated within the microprocessor.
Interrupt resetting will allows to disable all the interrupts apart from TRAP.

EI (Enable Interrupts)
This type of instruction is mainly used to allow the interrupt. Once the interrupt
enable pin is set then leads to enabling the interrupts within the system.

HLT (Halt & Enter Wait State)
Once the HLT interrupt is decoded through the microprocessor, it stops the current
operation and waits for further instruction. To escape from the halt condition either
a reset or an interrupt is necessary.

SIM (Set Interrupt Mask)
SIM is the set interrupt mask, which is used to execute the
hardware interrupts programming & serial output.
RIM (Read Interrupt Mask)
RIM is the read interrupt mask that is used to situate the preferred data at the
accumulator based on the serial input & interrupt.

Addressing mode

These are the instructions used to transfer the data from one register to another
register, from the memory to the register, and from the register to the memory
without any alteration in the content

The term addressing mode refers to the way in which the operand of the instruction
is specified

Types of Addressing Modes

 Intel 8085 uses the following addressing modes:

1. Direct Addressing Mode
2. Register Addressing Mode
3. Register Indirect Addressing Mode
4. Immediate Addressing Mode
5. Implicit Addressing Mode

99

1. Direct Addressing Mode:-

The address of the operand(data) is directly available in the instruction itself.

In direct addressing mode, the data to be operated is available inside a memory
location and that memory location is directly specified as an operand

Examples:
LDA 2050 (load the contents of memory location into accumulator A)
LHLD address (load contents of 16-bit memory location into H-L register pair)
IN 35 (read the data from port whose address is 35)

2. Register Addressing Mode:-

In register addressing the operand is one of the general purpose registers. the
opcode specifies the address of the register in addition to the operation to be
performed.
In register addressing mode, the data to be operated is available inside the
register(s) and register(s) is operands. Therefore the operation is performed
within various registers of the microprocessor.

Examples:
MOV A, B (move the contents of register B to register A)
ADD B (add contents of registers A and B and store the result in register A)
INR A (increment the contents of register A by one)

3. Register Indirect Addressing Mode
In this mode of addressing the address of the operand is specified by a register
pair.
In register indirect addressing mode, the data to be operated is available inside a
memory location and that memory location is indirectly specified by a register
pair.

Examples:
MOV A, M (move the contents of the memory location pointed by the H-L pair to
the accumulator)
LDAX B (move contents of B-C register to the accumulator)
LXIH 9570 (load immediate the H-L pair with the address of the location 9570)

4. Immediate Addressing Mode

100

In immediate addressing mode the source operand is always data. If the data is
8-bit, then the instruction will be of 2 bytes, if the data is of 16-bit then the
instruction will be of 3 bytes.
Examples:

MVI B 45 (move the data 45H immediately to register B)
LXI H 3050 (load the H-L pair with the operand 3050H immediately)
JMP address (jump to the operand address immediately)

5. Implicit Addressing Mode
In implied/implicit addressing mode the operand is hidden and the data to be
operated is available in the instruction itself.

Examples:

CMA (finds and stores the 1’s complement of the contents of accumulator A in A)
RRC (rotate accumulator A right by one bit)
RLC (rotate accumulator A left by one bit)

Timing Diagram:

Timing Diagram is a graphical representation. It represents the execution time
taken by each instruction in a graphical format. The execution time is represented
in T-states.

Instruction Cycle:

 The time required to execute an instruction is called instruction cycle.

or

 The time taken by the processor to complete the execution of an instruction. An

instruction cycle consists of one to six machine cycles.

Fetch cycle:

The fetch cycle in a microprocessor comprises(consist) of several time states
during which the next instruction to be executed is copied (fetched) from the
memory location (whose address is in the Program Counter) to the Instruction
Register.

101

IC=FC+EC

Machine Cycle:

The time required to access the memory or input/output devices is called machine
cycle.

or

The time required to complete one operation; accessing either the memory or I/O
device. A machine cycle consists of three to six T-states.

T-State:

The machine cycle and instruction cycle takes multiple clock periods. A portion of
an operation carried out in one system clock period is called as T-state.

 Or

 Time corresponding to one clock period. It is the basic unit to calculate execution
of instructions or programs in a processor.

Rules to identify number of machine cycles in an instruction:
1. If an addressing mode is direct, immediate or implicit then No. of machine
cycles = No. of bytes.

2. If the addressing mode is indirect then No. of machine cycles = No. of bytes + 1.
Add +1 to the No. of machine cycles if it is memory read/write operation.

3. If the operand is 8-bit or 16-bit address then, No. of machine cycles = No. of
bytes +1.

102

4. These rules are applicable to 80% of the instructions of 8085.

CONCEPT OF TIMING DIAGRAM:

The 8085 microprocessor has 5 (seven) basic machine cycles. They are

1. Opcode fetch cycle (4T)
2. Memory read cycle (3 T)
3. Memory write cycle (3 T)
 4. I/O read cycle (3 T)
 5. I/O write cycle (3 T

Timing Diagram of Opcode fetch of 8085 :

The microprocessor requires instructions to perform any particular action. In order
to perform these actions microprocessor utilizes Opcode which is a part of an
instruction which provides detail(ie. Which operation µp needs to perform) to
microprocessor.

103

Each instruction of the processor has one byte opcode.

The opcodes are stored in memory. So, the processor executes the opcode fetch
machine cycle to fetch the opcode from memory.

Hence, every instruction starts with opcode fetch machine cycle.

The time taken by the processor to execute the opcode fetch cycle is 4T.

In this time, the first, 3 T-states are used for fetching the opcode from memory and
the remaining T-states are used for internal operations by the processor.

Timing Diagram of Memory Read

The memory read machine cycle is executed by the processor to read a data byte
from memory.

The processor takes 3T states to execute this cycle.

The instructions which have more than one byte word size will use the machine
cycle after the opcode fetch machine cycle.

104

Timing Diagram of Memory Write

105

The memory write machine cycle is executed by the processor to write a data byte
in a memory location.

 The processor takes, 3T states to execute this machine cycle.

Timing Diagram of I/O Read

The I/O Read cycle is executed by the processor to read a data byte from I/O port
or from the peripheral, which is I/O, mapped in the system.

 The processor takes 3T states to execute this machine cycle.

 The IN instruction uses this machine cycle during the execution.

106

Timing diagram for STA 526AH

STA means Store Accumulator -The contents of the accumulator is stored in the
specified address (526A).

 The opcode of the STA instruction is said to be 32H. It is fetched from the
memory 41FFH (see fig). - OF machine cycle

 Then the lower order memory address is read (6A). - Memory Read Machine
Cycle

107

 Read the higher order memory address (52).- Memory Read Machine Cycle

 The combination of both the addresses are considered and the content from
accumulator is written in 526A. - Memory Write Machine Cycle

Assume the memory address for the instruction and let the content of accumulator
is C7H. So, C7H from accumulator is now stored in 526A.

Timing diagram for INR M

 Fetching the Opcode 34H from the memory 4105H. (OF cycle)

 Let the memory address (M) be 4250H. (MR cycle -To read Memory address and
data)

 Let the content of that memory is 12H.

 Increment the memory content from 12H to 13H. (MW machine cycle)

Counter and time delay

Counter:

A counter is designed simply by loading appropriate number into one of the
registers and using INR or DNR instructions.

Loop is established to update the count.

Each count is checked to determine whether it has reached final number ;if not, the
loop is repeated.

Time delay:

Procedure used to design a specific delay.

A register is loaded with a number , depending on the
the register is decremented until it reaches zero by setting up a loop with
conditional jump instruction.

108

Counter and time delay.

is designed simply by loading appropriate number into one of the
registers and using INR or DNR instructions.

Loop is established to update the count.

Each count is checked to determine whether it has reached final number ;if not, the

Procedure used to design a specific delay.

A register is loaded with a number , depending on the time delay required and then
the register is decremented until it reaches zero by setting up a loop with
conditional jump instruction.

is designed simply by loading appropriate number into one of the

Each count is checked to determine whether it has reached final number ;if not, the

time delay required and then
the register is decremented until it reaches zero by setting up a loop with

Simple assembly language programming of 8085

109

assembly language programming of 8085

assembly language programming of 8085.

110

Addition of Two 8-bit No.; sum 8-bit

8-bit Subtraction

111

112

ADDITION OF TWO 8-BIT NO.;SUM:16-BIT

113

CHAPTER-5

INTERFACING AND SUPPORT CHIPS

Basic Interfacing Concepts

Interface is the path for communication between two components. Interfacing is of two
types, memory interfacing and I/O interfacing.

Memory mapping & I/O mapping

Functional block diagram and description of each
block of Programmable peripheral interface Intel 8255

The parallel input-output port chip 8255 is also called as programmable peripheral
input- output port. The Intel’s 8255 is designed for use with Intel’s 8-bit, 16-bit
and higher capability microprocessors.

The 8255A is a general purpose programmable I/O device designed to transfer the
data from I/O to interrupt I/O under certain conditions as required. It can be used
with almost any microprocessor.

Ports of 8255A
8255A has three ports, i.e., PORT A, PORT B, and PORT C.

Port A contains one 8-bit parallel port i.e PA − PA

Port B contains one 8-bit parallel port i.e PB − PB

Port C can be split into two parts, i.e. PORT C lower (PC − PB) and PORT C
upper (e PC − PC) by the control word.

114

115

Data Bus Buffer

It is a tri-state 8-bit buffer, which is used to interface the microprocessor to the
system data bus. Data is transmitted or received by the buffer as per the
instructions by the CPU. Control words and status information is also transferred
using this bus.

Read/ Write control logic:

 This unit manages the internal operations of the system. This unit holds the
ability to control the transfer of data and control or status words both internally
and externally.

Whenever there exists a need for data fetch then it accepts the address provided by
the processor through the bus and immediately generates command to the 2
control groups for the particular operation.

Group A and Group B control:

These two groups are handled by the CPU and functions according to the
command generated by the CPU. The CPU sends control words to the group A
and group B control and they in turn sends the appropriate command to their
respective port.

the group A has the access of the port A and higher order bits of port C. While
group B controls port B with the lower order bits of port C.

116

𝑪𝑺: It stands for chip select. A low signal at this pin shows the enabling of
communication between the 8255 and the processor. More specifically we can say
that the data transfer operation gets enabled by an active low signal at this pin.

𝑹𝑫 – It is the signal used for read operation. A low signal at this pin shows that
CPU is performing read operation at the ports or status word. Or we can say that
8255 is providing data or information to the CPU through data buffer.

𝑾𝑹 – It shows write operation. A low signal at this pin allows the CPU to perform
write operation over the ports or control register of 8255 using the data bus buffer.

A0 and A1: These are basically used to select the desired port among all the ports of
the 8255 and it do so by forming conjunction with RD and WR. It forms
connection with the LSB of the address bus.
The table below shows the operation of the control signals:

For the 1st unit of 8255, i.e 8255.1

A1 A0 Port/Control
word

Register
address

Device selected

0 0 00 Port-A

0 1 01 Port-B

1 0 02 Port-C

1 1 03 Control Register

117

For the 2nd unit of 8255, i.e 8255.2

A1 A0 Port/Control
word

Register
address

Device selected

0 0 08 Port-A

0 1 09 Port-B

1 0 0A Port-C

1 1 0B Control Register

Reset: It is an active high signal that shows the resetting of the PPI. A high signal
at this pin clears the control registers and the ports are set in the input mode.
Initializing the ports to input mode is done to prevent circuit breakdown. As in case
of reset condition, if the ports are initialized to output mode then there exist
chances of destruction of 8255 along with the processor.

Operating mode of 8255
Operating mode can be classified as follows
Mode 0: Simple input/output
Mode 1: Input output with handshaking
Mode 2: Bidirectional I/O handshaking

Mode 0: Simple input/output:-
 In this mode, all the three ports can be programmed either as the input or the
output port. Each port can be programmed in either input mode or output mode
where outputs are latched and inputs are not latched. Ports do not have interrupt
capability. The ports in mode-0 can be used to interface DIP switches, hexa-
keypad, LEDs and 7-segment LEDs to the processor

Mode 1: Input output with handshaking
In mode 1 , only port A and B can be programmed either as the input or output
port . the port-C are used for handshaking and interrupt control signals. Input and
output data are latched. Interrupt driven data transfer scheme is possible

Mode 2: Bidirectional I/O handshaking

118

In this mode , all the port will be a bidirectional port(i.e. the processor can perform
both read and write operations with an IO device connected to a port in mode-2)
only port-A can be programmed to work in mode-2. Five pins of port-C are used
for handshake signals. This mode is used primarily in applications such as data
transfer between two computers or floppy disk controller interface

Control Word:-

119

120

Example are as follows:

121

Program for Traffic light Control using 8085 microprocessor

122

123

Program for Square wave generator using 8085
microprocessor

