Discipline: Civil/Electrical /Mechanical Engg.	Semester: 2 nd	Name of the Teaching Faculty: Suraj Kumar Garada
Subject: Engg.	No. of days/week	No. of weeks:16
Mathematics	class allotted: 5+1	Semester from: 14/03/22 to 18/06/22
II		
(Th 3)		
Week	Class Day	Theory Topics
1 st	1 st	Chapter 2: LIMITS and CONTINUITY:
		a) Definition of afunction (Based on set theory)
		b) Types offunctions
		i) Constantfunction,
		ii) Identityfunction
		iii) Absolute valuefunction
		iv) The Greatest Integer Function
	2 nd	v) Trigonometric function withexample
		vi) Exponentialfunction
		vii) Logarithmic function
		Withexamples
	3 rd	c) Introduction of limit: definition ,example
		d) Existence of limit withexample
	4 th	e) Methods of evaluation of limit
	5 th	Methods of evaluation of limit continues with some examples
	6 th (Tutorial class)	Problems on existence of limit and evaluation of limit
2 nd	1st	i) $\lim_{x \to a} \frac{x^n - a^n}{x - a} = na^{n-1}$ $a^x - 1$
		ii) $\lim_{x \to 0} \frac{a^x - 1}{x} = \ln a = \log_e a$
	2 nd	$\lim_{x\to 0} \lim_{x\to 0} \frac{e^x-1}{x} = 1$
		<i>iv)</i> $\lim_{x\to 0} (1+x)^{\bar{x}} = e$
	3 rd	$\lim_{x \to \infty} (1 + \frac{1}{x}) = e$ $\log(1 + x)$
		vi) $\lim_{x\to 0x} \frac{=1}{=1}$ Some problems using these formulae
	4 th	$\lim_{x\to 0} \frac{\sin x}{\frac{1}{x}} = 1$
		viii) $\lim_{x\to 0} \frac{\tan x}{x} = 1$ Some problems using these

		formulae
	5 th	f) Definition of continuity of a function at apoint, Existence of continuity with example
	6 th (Tutorial class)	Problems on limit and continuity
3 rd	1 st	Chapter 3: DERIVATIVES:
		a) Derivative of a function at apointb) Algebra ofderivative
	2 nd	c) Derivative of standard functions: x^n , a^x , $log x$, e^x
	3 rd	Derivative of standard functions continues: $sin \ x, \ cos \ x, \ tanx$
	4 th	Derivative of standard functions continues: $\cot x$, $\sec x$, $\csc x$, $\sin^{-1}x$
	5 th	Derivative of standard functions continues: $cos^{-1}x$, $tan^{-1}x$, $cot^{-1}x$
	6 th (Tutorial class)	Problem solving on trigonometric functions
4 th	1 st	Derivative of standard functions continues: $sec^{-1}x,\ csc^{-1}x$,
		d) Derivatives of compositefunction
	2 nd	Derivatives of composite function(Chain rule) continues with examples
	3 rd	Derivatives of composite function(Chain rule) continues with examples
	4 th	e) Methods of differentiation ofi) Parametric function with examples
	5 th	Methods of differentiation of ii) Implicit function withexamples
	6 th (Tutorial class)	Solving problems on derivatives of parametric function and implicit function
5 th	1 st	Methods of differentiation of iii) Logarithmic function withexample
	2 nd	Methods of differentiation of iv) A function wrt another function withexample
	3 rd	 f) Applications ofderivatives: i) Successive differentiation (up to second order) Some problems on successive differentiation
	4 th	Solving problems on successive differentiation
	5 th	ii) Partial differentiation (function oftwo variables up to second order)
	6 th (Tutorial class)	Problems on derivative of logarithmic function and successive differentiation.
6 th	1 st	Partial differentiation continues
	2 nd	Some more problems on partial differentiation
	3 rd	Revision of derivative
	4 th	Chapter 4: INTEGRATION:

1		a) Definition of integration as inverse of differentiation
		b) Integral of standardfunctions
	_+th	<u> </u>
	5 th	c) Methods ofintegration:
	cth /T	i) Integration by substitution withexamples
	6 th (Tutorial class)	Problems on integration by substitution
7 th	1 st	ii) Integration by parts withexamples
	2 nd	Problems on integration by parts
	3 rd	d) Integration of the following forms
		i) $\int_{x^2+a^2} iii \int_{x^2-a^2} \frac{dx}{iii} \int_{a^2-x^2} \frac{dx}{dx} = \frac{dx}{1-x^2}$
		dx
		$x + a$ Iv) $\int \frac{1}{\sqrt{2} - 2}$ with examples
	4 th	Integration of the followingforms
		dx dx
		$\int \frac{\Box dx}{\sqrt{x^2 - x^2}} viii) \sqrt{a^2 - x^2} dx \text{ with}$
		$\int \sqrt{x x^2 + a^2}$ $\int \sqrt{x^2 + a^2}$ $\sqrt{x^2 + a^2}$
		examples
	5 th	Integration of the following forms
		ix) $\sqrt{a^2+x^2dx}$ x) $\sqrt{x^2-a^2dx}$ with problems
	6 th (Tutorial class)	Problems on integration by parts
8 th	1 st	e) Definite integrals and properties
		a a
		i) $\int f(x)dx = \int f(a-x)dx$
		$\int \int $
		0 0
		$ \begin{array}{cccc} b & a \\ c & c \end{array} $
		$ \int_{b}^{0} \int_{a}^{0} f(x)dx = \int_{a}^{0} f(x)dx $ ii) $ \int_{a}^{0} \int_{a}^{0} f(x)dx = \int_{a}^{0} f(x)dx $
		i) $\int_{0}^{b} f(x)dx = \int_{0}^{a} f(x)dx$ ii) $\int_{a}^{b} f(x)dx = -\int_{b}^{a} f(x)dx$ With problems
	2nd	ii) $\int_{a}^{b} f(x)dx = -\int_{b}^{c} f(x)dx$ With problems
	2 nd	With problems
	2 nd	
	2 nd	With problems
	2 nd	With problems $ \int_{a}^{c} f(x)dx = \int_{a}^{b} f(x)dx + \int_{b}^{c} f(x)dx, a < b < c $ a
	2 nd	With problems $ \int_{a}^{c} f(x)dx = \int_{a}^{b} f(x)dx + \int_{b}^{c} f(x)dx, a < b < c $ a
	2 nd	With problems $ \int_{a}^{c} f(x)dx = \int_{a}^{b} f(x)dx + \int_{b}^{c} f(x)dx, a < b < c $ $ \int_{a}^{a} f(x)dx = 0, \text{ if } f(x) = odd $
	2 nd	With problems $ \int_{a}^{c} f(x)dx = \int_{a}^{b} f(x)dx + \int_{b}^{c} f(x)dx, a < b < c $ $ \int_{a}^{a} f(x)dx = 0, \text{ if } f(x) = odd $
	2 nd	With problems $ \int_{a}^{c} f(x)dx = \int_{a}^{b} f(x)dx + \int_{b}^{c} f(x)dx, a < b < c $ $ \int_{a}^{a} f(x)dx = 0, \text{ if } f(x) = odd $
	2 nd	With problems $ \int_{a}^{c} f(x)dx = \int_{a}^{b} f(x)dx + \int_{a}^{c} f(x)dx, a < b < c $ $ \int_{a}^{a} f(x)dx = 0, \text{ if } f(x) = odd $ $ iv) $ $ = 2\int_{a}^{c} f(x)dx, a < b < c $
	2 nd	With problems $ \int_{a}^{c} f(x)dx = \int_{a}^{b} f(x)dx + \int_{a}^{c} f(x)dx, a < b < c $ $ \int_{a}^{a} f(x)dx = 0, \text{ if } f(x) = odd $ $ iv) $ $ = 2\int_{a}^{c} f(x)dx, a < b < c $
	2 nd	With problems $ iii) \qquad \int_{a}^{c} f(x)dx = \int_{a}^{b} f(x)dx + \int_{a}^{c} f(x)dx, a < b < c $ $ \int_{a}^{a} f(x)dx = 0, if f(x) = odd $ $ iv) \qquad = 2\int_{a}^{c} f(x)dx, if \qquad f(x) = even $
	2 nd	With problems $ \int_{a}^{c} f(x)dx = \int_{a}^{b} f(x)dx + \int_{a}^{c} f(x)dx, a < b < c $ $ \int_{a}^{a} f(x)dx = 0, \text{ if } f(x) = odd $ $ iv) $ $ = 2\int_{a}^{c} f(x)dx, a < b < c $
		With problems iii) $\int_{a}^{c} f(x)dx = \int_{a}^{b} f(x)dx + \int_{b}^{c} f(x)dx, a < b < c$ $\int_{a}^{a} f(x)dx = 0, if f(x) = odd$ iv) $= 2\int_{a}^{c} f(x)dx, if \qquad f(x) = even$ With examples

		i) Area enclosed by a curve and X-axisand example
	5 th	ii) Area of a circle with centre atorigin
	6 th (Tutorial class)	Solving problems on application of integration
9 th	1 st	Chapter 5: DIFFERENTIAL EQUATION: Definition, ODE, PDE, a) Order and degree of a differential equation
	2 nd	Determining Order and degree of a differential equation with examples
	3 rd	 b) Solution of differential equation Definition i) By method of separation of variable withexamples
	4 th	method of separation of variable continues with problem solving
	5 th	Some more problems on separation of variables
	6 th (Tutorial class)	Problems on determination of degree and order of a differential equation
10 th	1 st	ii) Linear equation example
	2 nd	dy Solvinglinear equation $+Py=Q$, where P, Qare dx functions of x
	3 rd	Problems on linear differential equation
	4 th	Some more Problems on linear differential equation
	5 th	Revision of differential equation
	6 th (Tutorial class)	Revision of differential equation
11 th	1 st	Chapter 1: VECTOR ALGEBRA:
		a) Introduction: definition of scalar , vector with examples
		b) Types of vectors: null vector, parallel vector, collinear vectors withexamples
	2 nd	c) Representation of a vector
	3 rd	d) Magnitude and direction of vectors with examples
	4 th	e) Addition and subtraction of vectors with examples
	5 th	Properties of vector addition and position vector
	6 th (Tutorial class)	Problems on magnitude and f) positionvector
12 th	1 st	g) scalar product of two vectors with examples
	2 nd	h) Geometrical meaning of dot product
	3 rd	Problems on dot product
	4 th	i) Angle between two vectors withexample
	5 th	j) Scalar and vector projection of two vectorswith examples
	6 th (Tutorial class)	Problems on Scalar and vector projection of two vectors

13 th	1 st	k) Vector product and geometrical meaning
	2 nd	Problems on vector product
	3 rd	Revision
	4 th	
	5 th	
	6 th	
	1 st	
14 th	2 nd	
	3 rd	Previous year question discussion
	4 th	
	5 th	
	6 th	
15 th	1 st	
	2 nd	
	3 rd	Previous year question discussion
	4 th	
	5 th	
	6 th	
16 th	1 st	
	2 nd	
	3 rd	Previous year question discussion
	4 th	
	5 th	
	6 th	