Discipline: Electrical Engg.	Semester: 3 rd	Name Of The Teaching Faculty: Suraj Kumar Garada
Subject: Engg.	No. of days/week	No. of weeks:15
Mathematics III (Th-1)	class allotted: 4	Semester from: 06/11/21 to 08/01/22
Week	Class Day	Theory Topics
1 st	1 st	Chapter 1: COMPLEX NUMBERS
		Real and imaginary numbers
	2 nd	Complex numbers, conjugate
		complex numbers, modulus and
		amplitude of a complex number
	3 rd	Geometrical representation of complex numbers
	4 th	Properties of complex numbers
2 nd	1st	Determination of three cube roots of unity and their properties
	2 nd	De moivre's theorem
	3 rd	Chapter 2: MATRICES
	4 th	Define rank of a matrix. Perform elementary row transformations to determine the rank
		of a matrix
3rd	1 st	State rouche's theorem for consistency of a system of linear equations in <i>n</i> unknowns.
	2 nd	Solve equations in three unknowns testing consistency
	3 rd	Chapter 3: LINEAR DIFFERENTIAL EQUATIONS
		Define homogeneous and non–homogeneous linear differential equations with constant coefficients with examples
	4 th	Auxiliary equation for linear differential equations with examples
4 th	1 st	Complementary function(c.f) for homogeneous linear differential equations with examples
	2 nd	Find general solution of linear differential equations in terms of c.f. and p.i
	3 rd	Derive rules for finding c.f. and p.i. in terms of operator d
	4 th	Particular integral(p.i) for non–homogeneous linear differential equations with examples

5 th	1 st	Particular integral(p.i) for non–homogeneous linear differential equations with examples
	2 nd	Define partial differential equation (p.d.e)
	3 rd	Form partial differential equations by eliminating arbitrary constants and arbitrary functions.
	4 th	Solve partial differential equations of the form pp + qq = r
6 th	1 st	Chapter 4: LAPLACE TRANSFORMS
		Define gamma function and $\Gamma(n)=(n+1)!$
	2 nd	Find $\Gamma\left(\frac{1}{2}\right) = \sqrt{\pi}$
	3 rd	Define laplace transform of a function $f(t)$
	4 th	Derive l.t. of standard functions and explain existence conditions of l.t
7 th	1 st	Linear and shifting property of l.t
	2 nd	Laplace transformation of some elementary functions
	3 rd	Formulate I.t. of derivatives, integrals, multiplication by t^n and division by t
	4 th	Solve problems on laplace transformation
8 th	1 st	Define inverse laplace transform of a function
	2 nd	Derive formulae of inverse l.t.
	3 rd	Explain method of partial fractions
	4 th	Problems oninverse laplace transform
9 th	1 st	Chapter 5:FOURIER SERIES
		Define periodic functions with examples
	2 nd	State dirichlet's condition for the fourier expansion of a function and it's convergence
	3 rd	Express periodic function $f(x)$ satisfying dirichlet's conditions as a fourier series
	4 th	State euler's formulae
10 th	1 st	Formulae for fourier series coefficients
	2 nd	Problems on finding fourier series coefficients
	3 rd	Problems on finding fourier series coefficients
	4 th	Problems on finding fourier series coefficients

2 nd 3 rd 4 th	Find fourier series of even and odd functions in $(0 \le x \le 2\pi \text{ and } -\pi \le x \le \pi)$ Obtain fourier series of continuous functions in $(0 \le x \le 2\pi \text{ and } -\pi \le x \le \pi)$ Obtain fourier series of functions having points of discontinuity $(0 \le x \le 2\pi \text{ and } -\pi \le x \le \pi)$ Chapter 6: NUMERICAL METHODS
4 th	and $-\pi \le x \le \pi$) Obtain fourier series of functions having points of discontinuity ($0 \le x \le 2\pi$ and $-\pi \le x \le \pi$)
	$0 \le x \le 2\pi \text{ and } -\pi \le x \le \pi$
1 st	Chapter 6: NUMERICAL METHODS
	•
	Appraise limitation of analytical methods of solution of algebraic equations
2 nd	Derive iterative formula for finding the solutions of algebraic equations by bisection method
3 rd	Derive iterative formula for finding the solutions of algebraic equations by secant and regula-falsi method
4 th	Derive iterative formula for finding the solutions of algebraic equations by newton- raphson method
1 st	Chapter 7: FINITE DIFFERENCE AND INTERPOLATION
	Explain finite difference
2 nd	Form table of forward difference.
3 rd	Form table of backward difference.
4 th	Define shift operator(e) and establish relation between e & difference operator(Δ)
1 st	Problems based on these finite difference operators
2 nd	State lagrange's interpretation formula for unequal intervals
3 rd	Derive newton's forward interpolation formula for equal intervals
4 th	Derive newton's backward interpolation formula for equal intervals
1 st	Explain numerical integration
2 nd	Newton's cote's formula
3 rd	Trapezoidal rule
4 th	Simpson's 1/3rd rule
	3rd 4th 1st 2nd 3rd 4th 1st 2nd 3rd 4th 1st 2nd 3rd 4th 3rd 4th 3rd 4th