Discipline: Electrical Engg.	Semester: $3^{\text {rd }}$	Name Of The Teaching Faculty: Suraj Kumar Garada
Subject: Engg. Mathematics III (Th-1)	No. of days/week class allotted: 4	No. of weeks:15 Semester from: 06/11/21 to 08/01/22
Week	Class Day	Theory Topics
$1^{\text {st }}$	$1^{\text {st }}$	Chapter 1: COMPLEX NUMBERS Real and imaginary numbers
	$2^{\text {nd }}$	Complex numbers, conjugate complex numbers, modulus and amplitude of a complex number
	$3^{\text {rd }}$	Geometrical representation of complex numbers
	$4^{\text {th }}$	Properties of complex numbers
$2^{\text {nd }}$	1st	Determination of three cube roots of unity and their properties
	$2^{\text {nd }}$	De moivre's theorem
	$3{ }^{\text {rd }}$	Chapter 2: MATRICES Define rank of a matrix.
	$4^{\text {th }}$	Perform elementary row transformations to determine the rank of a matrix
$3^{\text {rd }}$	$1^{\text {st }}$	State rouche's theorem for consistency of a system of linear equations in n unknowns.
	$2^{\text {nd }}$	Solve equations in three unknowns testing consistency
	$3{ }^{\text {rd }}$	Chapter 3: LINEAR DIFFERENTIAL EQUATIONS Define homogeneous and non-homogeneous linear differential equations with constant coefficients with examples
	$4^{\text {th }}$	Auxiliary equation for linear differential equations with examples
$4^{\text {th }}$	$1^{\text {st }}$	Complementary function(c.f) for homogeneous linear differential equations with examples
	$2^{\text {nd }}$	Find general solution of linear differential equations in terms of c.f. and p.i
	$3{ }^{\text {rd }}$	Derive rules for finding c.f. and p.i. in terms of operator d
	$4^{\text {th }}$	Particular integral(p.i) for non-homogeneous linear differential equations with examples

$15^{\text {th }}$	$1^{\text {st }}$	Particular integral(p.i) for non-homogeneous linear differential equations with examples
	$2^{\text {nd }}$	Define partial differential equation (p.d.e)
	$3{ }^{\text {rd }}$	Form partial differential equations by eliminating arbitrary constants and arbitrary functions.
	$4^{\text {th }}$	Solve partial differential equations of the form $\mathrm{pp}+\mathrm{qq}=\mathrm{r}$
$6^{\text {th }}$	$1^{\text {st }}$	Chapter 4: LAPLACE TRANSFORMS Define gamma function and $\Gamma(n)=(n+1)$!
	$2^{\text {nd }}$	Find $\Gamma\left(\frac{1}{2}\right)=\sqrt{\pi}$
	$3{ }^{\text {rd }}$	Define laplace transform of a function $f(t)$
	$4^{\text {th }}$	Derive l.t. of standard functions and explain existence conditions of l.t
$7^{\text {th }}$	$1^{\text {st }}$	Linear and shifting property of l.t
	$2^{\text {nd }}$	Laplace transformation of some elementary functions
	$3{ }^{\text {rd }}$	Formulate l.t. of derivatives, integrals, multiplication by t^{n} and division by t
	$4^{\text {th }}$	Solve problems on laplace transformation
$8^{\text {th }}$	$1{ }^{\text {st }}$	Define inverse laplace transform of a function
	$2^{\text {nd }}$	Derive formulae of inverse I.t.
	$3^{\text {rd }}$	Explain method of partial fractions
	$4^{\text {th }}$	Problems oninverse laplace transform
$9^{\text {th }}$	$1^{\text {st }}$	Chapter 5:FOURIER SERIES Define periodic functions with examples
	$2^{\text {nd }}$	State dirichlet's condition for the fourier expansion of a function and it's convergence
	$3{ }^{\text {rd }}$	Express periodic function $f(x)$ satisfying dirichlet's conditions as a fourier series
	$4^{\text {th }}$	State euler's formulae
$10^{\text {th }}$	$1^{\text {st }}$	Formulae for fourier series coefficients
	$2^{\text {nd }}$	Problems on finding fourier series coefficients
	$3^{\text {rd }}$	Problems on finding fourier series coefficients
	$4^{\text {th }}$	Problems on finding fourier series coefficients

$11^{\text {th }}$	$1{ }^{\text {st }}$	Define even and odd functions
	$2^{\text {nd }}$	Find fourier series of even and odd functions in ($0 \leq x \leq 2 \pi$ and $-\pi \leq x \leq \pi$)
	$3{ }^{\text {rd }}$	Obtain fourier series of continuous functions in ($0 \leq x \leq 2 \pi$ and $-\pi \leq x \leq \pi$)
	$4^{\text {th }}$	Obtain fourier series of functions having points of discontinuity ($0 \leq x \leq 2 \pi$ and $-\pi \leq x \leq \pi$)
$12^{\text {th }}$	$1^{\text {st }}$	Chapter 6: NUMERICAL METHODS Appraise limitation of analytical methods of solution of algebraic equations
	$2^{\text {nd }}$	Derive iterative formula for finding the solutions of algebraic equations by bisection method
	$3{ }^{\text {rd }}$	Derive iterative formula for finding the solutions of algebraic equations by secant and regula-falsi method
	$4^{\text {th }}$	Derive iterative formula for finding the solutions of algebraic equations by newton- raphson method
$13^{\text {th }}$	$1{ }^{\text {st }}$	Chapter 7: FINITE DIFFERENCE AND INTERPOLATION Explain finite difference
	$2^{\text {nd }}$	Form table of forward difference.
	$3{ }^{\text {rd }}$	Form table of backward difference.
	$4^{\text {th }}$	Define shift operator(e) and establish relation between e\& difference operator(Δ)
	$1{ }^{\text {st }}$	Problems based on these finite difference operators
$14^{\text {th }}$	$2^{\text {nd }}$	State lagrange's interpretation formula for unequal intervals
	$3{ }^{\text {rd }}$	Derive newton's forward interpolation formula for equal intervals
	$4^{\text {th }}$	Derive newton's backward interpolation formula for equal intervals
$15^{\text {th }}$	$1{ }^{\text {st }}$	Explain numerical integration
	$2^{\text {nd }}$	Newton's cote's formula
	$3{ }^{\text {rd }}$	Trapezoidal rule
	$4^{\text {th }}$	Simpson's 1/3rd rule

