Structural Mechanics

Discipline: Civil Engineering	Semester: 3 rd		Name of the teaching faculty: Er. Sangram Mishra
Week	Period	No of period available	Theory Topics
	1	1	 1.0 Review Of Basic Concepts 1.1 Basic Principle of Mechanics: Force, Moment, support conditions,
	2,3	2	1.1 Conditions of equilibrium, C.G & MI, Free body diagram
18T	4	1	1.2 Review of CG and MI of different sections
181	5	1	 2.0Simple And Complex Stress, Strain 2.1 Simple Stresses and Strains Introduction to stresses and strains: Mechanical properties of materials – Rigidity, Elasticity, Plasticity, Compressibility, Hardness, Toughness, Stiffness, Brittleness, Ductility, Malleability, Creep, Fatigue, Tenacity, Durability,
	6	1	2.1 Types of stresses -Tensile, Compressive and Shear stresses, Types of strains - Tensile, Compressive and Shear strains,
2nd	7,8	2	2.1 Complimentary shear stress - Diagonal tensile / compressive Stresses due to shear, Complimentary shear stress - Diagonal tensile / compressive Stresses due to shear, Elongation and Contraction, Longitudinal and Lateral strains, Poisson's Ratio, Volumetric strain, computation of stress, strain, Poisson's ratio, change in dimensions and volume etc,
	9	1	2.1Hooke's law - Elastic Constants, Derivation of relationship between the elastic constants.

		LESSONILAN	
	10	1	Monthly Class Test
3rd	10	1	2.2 Application of simple stress and strain in engineering field: Behaviour of ductile and brittle materials under direct loads, Stress Strain curve of a ductile material
	11,12	2	2.2 Limit of proportionality, Elastic limit, Yield stress, Ultimate stress, Breaking stress,Percentage elongation, Percentage reduction in area,Significance of percentage elongation and reduction in area of cross section
	13	1	2.2 Deformation of prismatic bars due to uniaxial load, Deformation of prismatic bars due to its self weight
	14	1	2.3 Complex stress and strain Principal stresses and strains: Occurrence of normal and tangential stresses, Concept of Principal stress and Principal Planes, major and minor principal stresses and their orientations
4th	15,16	2	2.3 Mohr's Circle and its application to solve problems of complex stresses
	17	1	 3.0Stresses In Beams and Shafts 3.1 Stresses in beams due to bending: Bending stress in beams – Theory of simple bending – Assumptions
	18	1	3.1 Moment of resistance – Equation for Flexure– Flexural stress distribution –

	19	1	3.1 Curvature of beam – Position of N.A. and Centroidal Axis – Flexural rigidity – Significance of Section modulus
5th	20,21	2	3.2 Shear stresses in beams: Shear stress distribution in beams of rectangular, circular and standard sections symmetrical about vertical axis.
	22	1	3.3 Stresses in shafts due to torsion: Concept of torsion, basic assumptions of pure torsion,
	23	1	3.3 torsion of solid and hollow circular sections, polar moment of inertia torsional shearing stresses, angle of twist, torsional rigidity, equation of torsion
	24	1	3.4 Combined bending and direct stresses: Combination of stresses, Combined direct and bending stresses, Maximum and Minimum stresses in Sections, Conditions for no tension,
6 TH	25,26	2	3.4 Limit of eccentricity, Middle third/fourth rule, Core or Kern for square, rectangular and circular sections, chimneys, dams and retaining walls
	27	1	 4.0Columns and Struts 4.1 Columns and Struts, Definition, Short and Long columns, End conditions, Equivalent length / Effective length, Slenderness ratio,
	28	1	4.1 Axially loaded short and long column, Euler's theory of long columns, Critical load for Columns with different end conditions
	30	1	Monthly Class Test
7th	31,32	2	 5.0 Shear Force and Bending Moment 5.1 Types of loads and beams: Types of Loads: Concentrated (or) Point load, Uniformly Distributed load (UDL), Types of

3

	33	1	Supports: Simple support, Roller support, Hinged support, Fixed support,
	34	1	Internal Assessment
	35	1	Internal Assessment
8TH	36	1	5.1Types of Reactions: Vertical reaction, Horizontal reaction, Moment reaction
	37,38	2	5.1Types of Beams based on support conditions:Calculation of support reactions using equations of static equilibrium.
	39	1	5.1 Shear Force and Bending Moment: Signs Convention for S.F. and B.M, S.F and B.M of general cases of determinate beams with concentrated loads and udl only
	40	1	5.1 S.F and B.M diagrams for Cantilevers, Simply supported beams and Over hanging beams, Position of maximum BM
9TH	41	1	5.1 Point of contra flexure, Relation between intensity of load, S.F and B.M.
	42,43	2	 6.0Slope and Deflection 6.1 Introduction: Shape and nature of elastic curve (deflection curve);
	44,45	2	6.1Relationship between slope deflection and curvature (No derivation), Importance of slope and deflection.

10th	46,47,48,49,50	5	6.2 Slope and deflection of cantilever and simply supported beams under concentrated and uniformly distributed load (by Double Integration method, Macaulay's method).
11TH	51,52,53,54,55	5	6.2 Slope and deflection of cantilever and simply supported beams under concentrated and uniformly distributed load (by Double Integration method, Macaulay's method).
12 th	56,57,58	3	7.0Indeterminate Beams7.1 Indeterminacy in beams, Principle of consistent deformation/compatibility
	58	1	7.1 Analysis of propped cantilever, fixed and two span continuous beams by principle of superposition
	59	1	7.1 SF and BM diagrams (point load and udl covering full span)
13TH	60,61	2	8.0Trusses8.1 Introduction: Types of trusses, statically determinate and indeterminate trusses
	62,63,64	3	8.2 Analysis of trusses: Analytical method (Method of joints, method of Section)
14th	65,66,67,68	4	8.2 degree of indeterminacy, stable and unstable trusses, advantages of trusses.
	69	1	Monthly Class Test
	70	1	Revision
15TH	71	1	Revision
	72	1	Revision
	73	1	Previous Year Questions Discussion
	74	1	Previous Year Questions Discussion