Discipline -Electrical	Semester- 4 th	Semester :10/03/2022- 10/06/2022
SUBJECT ENERGY CONVERSION – I	Theory periods: 4P / week Tutorial: 1 P / week	Name of the Teaching Faculty-Mrs. Damayanti Bhatt
WEEK	DAY	TOPICS
1st	1st	1.D.C GENERATOR 1.1. Operating principle of generator
	2nd	Constructional features of DC machine. 1.2.1. Yoke, Pole & field winding, Armature, Commutator.
	3 rd	1.2.2. Armature winding, back pitch, Front pitch, Resultant pitch and commutator- pitch
	4th	1.2.3. Simple Lap and wave winding, Dummy coils
	5th	Revision and doubt clearing
2nd	1st	1.3. Different types of D.C. machines (Shunt, Series and Compound)
	2nd	1.3. Different types of D.C. machines (Shunt, Series and Compound)
	3 rd	1.4. Derivation of EMF equation of DC generators. (Solve problems)
	4th	1.4. Derivation of EMF equation of DC generators. (Solve problems)
	5th	1.5. Losses and efficiency of DC generator. Condition for maximum efficiency and numerical problems.
3rd	1st	1.5. Losses and efficiency of DC generator. Condition for maximum efficiency and numerical problems.
	2nd	1.6. Armature reaction in D.C. machine
	3 rd	1.6. Armature reaction in D.C. machine

	4th	1.7. Commutation and
	100	methods of improving
		commutation.
	5th	1.7.1. Role of inter poles and
	3.11	compensating winding in
		commutation
4th	1st	1.8. Characteristics of D.C.
401	130	Generators
	2nd	1.8. Characteristics of D.C.
	2110	Generators
	3 rd	1.8. Characteristics of D.C.
	3	Generators
	4th	1.9. Application of different
	401	types of D.C. Generators.
	5th	1.10. Concept of critical
	301	resistance and critical speed
		of DC shunt genera
5th	1st	1.11. Conditions of Build-up of
Sui	150	•
	2nd	emf of DC generator.
	2nd	1.12. Parallel operation of D.C. Generators.
	3 rd	
		1.13. Uses of D.C generators
	4th	D. C. MOTORS
		2.1. Basic working principle of
	- Falls	DC moto
	5th	2.2. Significance of back emf
C+h	104	in D.C. Motor
6th	1st	2.3. Voltage equation of D.C. Motor and condition for
		maximum power
	2nd	output(simple problems) 2.3. Voltage equation of D.C.
	Zilu	Motor and condition for
		maximum power output(simple problems)
	3 rd	
	3	2.4. Derive torque equation
	4+1-	(solve problems)
	4th	2.4. Derive torque equation
	F+h	(solve problems)
	5th	2.5. Characteristics of shunt,
		series and compound motors
711.	1.04	and their application
7th	1st	2.5. Characteristics of shunt,
		series and compound motors
		and their application
	2nd	2.6. Starting method of shunt,
		series and compound motors.

	3 rd	2.6. Starting method of shunt,
		series and compound motors.
	4th	2.7. Speed control of D.C
		shunt motors by Flux control
		method. Armature voltage
		Control method. Solve
		problems
	5th	2.7. Speed control of D.C
		shunt motors by Flux control
		method. Armature voltage
		Control method. Solve
		problems

8th	1st	2.8. Speed control of D.C. series motors by Field Flux control method, Tapped field method and series-parallel method
	2nd	2.8. Speed control of D.C. series motors by Field Flux control method, Tapped field method and series-parallel method
	3 rd	2.10. Determination of efficiency of D.C. Machine by Swinburne's Test method(solve numerical problems)
	4th	2.11. Losses, efficiency and power stages of D.C. motor(solve numerical problems)
	5th	2.12. Uses of D.C. motors
9th	1st	Revision of DC Motors
	2nd	3. SINGLE PHASE TRANSFORM 3.1 Working principle of transformer ER
	3 rd	3.2 Constructional feature of Transformer. 3.2.1 Arrangement of core & winding in different types of transformer
	4th	3.2.2 Brief ideas about transformer accessories such

		as as many victory to oil.
		as conservator, tank,
		breather, and explosion vent
		etc.
		3.2.3 Explain types of cooling
		methods
	5th	3.3 State the procedures for
		Care and maintenance.
10th	1st	3.4 EMF equation of
		transformer
	2nd	Numericals on EMF equation
		of transformer
	3 rd	3.5 Ideal transformer voltage
		transformation ratio
	4th	3.6 Operation of Transformer
		at no load, on load with
		phasor diagram
	5th	3.6 Operation of Transformer
		at no load, on load with
		phasor diagram
11th	1st	3.7 Equivalent Resistance,
		Leakage Reactance and
		Impedance of transforme
	2nd	3.7 Equivalent Resistance,
		Leakage Reactance and
		Impedance of transforme
	3 rd	3.8 To draw phasor diagram
		of transformer on load, with
		winding Resistance and
		Magnetic leakage with using
		upf, leading pf and lagging pf
		load.
	4th	3.8 To draw phasor diagram
		of transformer on load, with
		winding Resistance and
		Magnetic leakage with using
		upf, leading pf and lagging pf
		load.
	5th	3.9 To explain Equivalent
	3611	circuit and solve numerical
		problems.
12th	1st	3.9 To explain Equivalent
	130	circuit and solve numerical
		problems.
	2nd	·
	2nd	3.10 Approximate & exact
		voltage drop calculation of a
	2 rd	Transformer
	3 rd	3.10 Approximate & exact

		voltage drop calculation of a
		Transformer
	4th	3.11 Regulation of
		transformer.
	5th	3.12 Different types of losses
		in a Transformer. Explain
		Open circuit and Short Circuit
		test.(Solve numerical
		problems)
13th	1st	3.13 Explain Efficiency,
		efficiency at different loads
		and power factors, condition
		for maximum efficiency (solve
		problems
	2nd	3.14 Explain All Day Efficiency
		(solve problems)
	3 rd	3.15 Determination of load
		corresponding to Maximum
		efficiency
	4th	3.16 Parallel operation of
		single phase transformer
	5th	4. AUTO TRANSFORMER
		4.1. Constructional features
		of Auto transformer
14th	1st	4.2. Working principle of
		single phase Auto
		Transformer.
	2nd	4.3. Comparison of Auto
		transformer with an two
		winding transformer (saving
		of Copper).
	3 rd	4.4. Uses of Auto transformer
	4th	4.5. Explain Tap changer with
		transformer (on load and off
		load condition)
	5th	5. INSTRUMENT
		TRANSFORMERS
		1.1 Explain Current
		Transformer and Potential
		Transformer
15th	1st	1.2 Define Ratio error, Phase
		angle error, Burden.
	2nd	1.3 Uses of C.T. and P.T.
	3 rd	1.3 Uses of C.T. and P.T.
	4th	Revision
	5th	Revision